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UNIT - 1 

NUMBER SYSTEMS & BOOLEAN ALGEBRA 

 
• Introduction about digital system 

• Philosophy of number systems 

• Complement representation of negative numbers 

• Binary arithmetic 

• Binary codes 

• Error detecting & error correcting codes 

• Hamming codes 

 

INTRODUCTION ABOUT DIGITAL SYSTEM 

A Digital system is an interconnection of digital modules and it is a system that manipulates 

discrete elements of information that is represented internally in the binary form. 

 
Now a day’s digital systems are used in wide variety of industrial and consumer products such as 

automated industrial machinery, pocket calculators, microprocessors, digital computers, digital watches, 

TV games and signal processing and so on. 

Characteristics of Digital systems 

• Digital systems manipulate discrete elements of information. 

• Discrete elements are nothing but the digits such as 10 decimal digits or 26 letters of alphabets and 

so on. 

• Digital systems use physical quantities called signals to represent discrete elements. 

• In digital systems, the signals have two discrete values and are therefore said to be binary. 

• A signal in digital system represents one binary digit called a bit. The bit has a value either 0 or 1. 

 
Analog systems vs Digital systems 

 
Analog system process information that varies continuously i.e; they process time varying signals 

that can take on any values across a continuous range of voltage, current or any physical parameter. 

 
Digital systems use digital circuits that can process digital signals which can take either 0 or 1 for 

binary system. 
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Advantages of Digital system over Analog system 
 

 1. Ease of programmability  

 
The digital systems can be used for different applications by simply changing the program without 

additional changes in hardware. 

 

 2. Reduction in cost of hardware  

 
The cost of hardware gets reduced by use of digital components and this has been possible due to 

advances in IC technology. With ICs the number of components that can be placed in a given area of 

Silicon are increased which helps in cost reduction. 

 

 3.High speed  

 
Digital processing of data ensures high speed of operation which is possible due to advances in 

Digital Signal Processing. 

 

 4. High Reliability  

Digital systems are highly reliable one of the reasons for that is use of error correction codes. 

 5. Design is easy  

 
The design of digital systems which require use of Boolean algebra and other digital techniques is 

easier compared to analog designing. 

 

 6. Result can be reproduced easily  

 
Since the output of digital systems unlike analog systems is independent of temperature, noise, 

humidity and other characteristics of components the reproducibility of results is higher in digital systems 

than in analog systems. 

 
Disadvantages of Digital Systems 

• Use more energy than analog circuits to accomplish the same tasks, thus producing more heat as 

well. 

• Digital circuits are often fragile, in that if a single piece of digital data is lost or misinterpreted the 

meaning of large blocks of related data can completely change. 

• Digital computer manipulates discrete elements of information by means of a binary code. 

• Quantization error during analog signal sampling. 
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NUMBER SYSTEM 

 
Number system is a basis for counting varies items. Modern computers communicate and operate 

with binary numbers which use only the digits 0 &1. Basic number system used by humans is Decimal 

number system. 

 
For Ex: Let us consider decimal number 18. This number is represented in binary as 10010. 

 
We observe that binary number system take more digits to represent the decimal number. For large 

numbers we have to deal with very large binary strings. So this fact gave rise to three new number systems. 

 
i) Octal number systems 

 
ii) Hexa Decimal number system 

 
iii) Binary Coded Decimal number(BCD) system 

To define any number system we have to specify 

• Base of the number system such as 2,8,10 or 16. 

 
• The base decides the total number of digits available in that number system. 

 
• First digit in the number system is always zero and last digit in the number system is always 

base-1. 

 
Binary number system: 

The binary number has a radix of 2. As r = 2, only two digits are needed, and these are 0 and 1. In 

binary system weight is expressed as power of 2. 

 

 

 
The left most bit, which has the greatest weight is called the Most Significant Bit (MSB). And the 

right most bit which has the least weight is called Least Significant Bit (LSB). 
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For Ex: 1001.012 = [ ( 1 ) × 23 ] + [ ( 0 ) × 22 ] + [ ( 0 ) × 21 ] + [ ( 1 ) × 20 ] + [ ( 0 ) × 2-1 ] + [ 

( 1 ) × 22 ] 

1001.012 = [ 1 × 8 ] + [ 0 × 4 ] + [ 0 × 2 ] + [ 1 × 1 ] + [ 0 × 0.5 ] + [ 1 × 0.25 ] 

1001.012 = 9.2510 

 

 
Decimal Number system 

 
The decimal system has ten symbols: 0,1,2,3,4,5,6,7,8,9. In other words, it has a base of 10. 

 
Octal Number System 

 
Digital systems operate only on binary numbers. Since binary numbers are often very long, two 

shorthand notations, octal and hexadecimal, are used for representing large binary numbers. Octal systems 

use a base or radix of 8. It uses first eight digits of decimal number system. Thus it has digits from 0 to 7. 

 
Hexa Decimal Number System 

The hexadecimal numbering system has a base of 16. There are 16 symbols. The decimal digits 0 to 

9 are used as the first ten digits as in the decimal system, followed by the letters A, B, C, D, E and F, which 

represent the values 10, 11,12,13,14 and 15 respectively. 

 
 

Decima 

l 

Binar 

y 

Octal Hexadeci 

mal 

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 
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Number Base conversions 

 
The human beings use decimal number system while computer uses binary number system. 

Therefore it is necessary to convert decimal number system into its equivalent binary. 

 
i) Binary to octal number conversion 

ii) Binary to hexa decimal number conversion 
 

 
 

 
 

iii) Octal to binary Conversion 
 

 

iv) Hexa to binary conversion 

v) Octal to Decimal conversion 

Ex: convert 4057.068 to octal 

=4x83+0x82+5x81+7x80+0x8-1+6x8-2
 

 

=2048+0+40+7+0+0.0937 
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=2095.093710 

vi) Decimal to Octal Conversion 

Ex: convert 378.9310  to octal 

37810 to octal: Successive division: 
 

8 | 378 

|   

8 |47 --- 2 

|   

8 |5  --- 7 ↑ 

|   

0  --- 5 

 
=5728 

 

0.9310 to octal : 

0.93x8=7.44 

0.44x8=3.52 ↓ 

0.53x8=4.16 

0.16x8=1.28 

=0.73418 

378.9310=572.73418 

vii) Hexadecimal to Decimal Conversion 

Ex: 5C716 to decimal 

=(5x162)+(C x161)+ (7 x160) 

 

=1280+192+7 

 
=14710 

viii) Decimal to Hexadecimal Conversion 

Ex: 2598.67510 

 

1 6 2598  

16 162 -6 

10 

 
= A26 (16) 

-2 
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0.67510= 0.675x16 -- 10.8 

= 

= 

0.800x16  -- 12.8 ↓ 

0.800x16 -- 12.8 

= 0.800x16 -- 12.8 

=0.ACCC16 

 
2598.67510 = A26.ACCC16 

 
ix) Octal to hexadecimal conversion: 

 
The simplest way is to first convert the given octal no. to binary & then the binary no. to 

hexadecimal. 

Ex: 756.6038 

 
 

7 5 6 . 6 0 3 

111 101 110 . 110 000 011 

0001 1110 1110 . 1100 0001 1000 

1 E E . C 1 8 

x) Hexadecimal to octal conversion: 
 

First convert the given hexadecimal no. to binary & then the binary no. to octal. 

Ex: B9F.AE16 

 

 

 

 
 

=5637.534 

 
Complements: 

 
In digital computers to simplify the subtraction operation & for logical manipulation complements 

are used. There are two types of complements used in each radix system. 

 
i) The radix complement or r’s complement 

ii) The diminished radix complement or (r-1)’s complement

B 9 F . A E  

1011 1001 1111 . 1010 1110 

101 110 011 111 . 101 011 100 

5 6 3 7 . 5 3 4 
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Representation of signed no.s binary arithmetic in computers: 

 
• Two ways of rep signed no.s 

1. Sign Magnitude form 

2. Complemented form 

• Two complimented forms 

1. 1‘s compliment form 

2. 2‘s compliment form 

Advantage of performing subtraction by the compliment method is reduction in the hardware.( 

instead of addition & subtraction only adding ckt‘s are needed.) 

i. e, subtraction is also performed by adders only. 

Instead of subtracting one no. from other the compliment of the subtrahend is added to 

minuend. In sign magnitude form, an additional bit called the sign bit is placed in front of the no. 

If the sign bit is 0, the no. is +ve, If it is a 1, the no is _ve. 

 
Ex: 

 

0 1 0 1 0 0 1 

↓ 

Sign bit =+41 magnitude 

↑ 

1 1 0 1 0 0 1 

 
= -41 

Note: manipulation is necessary to add a +ve no to a –ve no 

 
Representation of signed no.s using 2’s or 1’s complement method: 

If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in 

front of the MSB.I f the no is _ve , the magnitude is rep in its 2‘s or 1‘s compliment form &a  

sign bit 1 is placed in front of the MSB. 

 
Ex: 

 
 

Given no. Sign mag form 2‘s comp form 1‘s comp form 

01101 +13 +13 +13 

010111 +23 +23 +23 

10111 -7 -7 -8 

1101010 -42 -22 -21 
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Special case in 2’s comp representation: 

Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the decimal 

equivalent is -2n , where n is the no of bits in the magnitude . 

Ex: 1000= -8 & 10000=-16 

 
 

Characteristics of 2’s compliment no.s: 

Properties: 

1. There is one unique zero 

2. 2‘s comp of 0 is 0 

3. The leftmost bit can‘t be used to express a quantity . it is a 0 no. is +ve. 

4. For an n-bit word which includes the sign bit there are (2n-1-1) +ve integers, 

2n-1 –ve integers & one 0 , for a total of 2n uniquestates. 

5. Significant information is containd in the 1‘s of the +ve no.s & 0‘s of the _ve 

no.s 

6. A _ve no. may be converted into a +ve no. by finding its 2‘s comp. 

 
 

Signed binary numbers: 
 
 

Decimal Sign 2‘s comp form Sign 1‘s comp form Sign mag form 

+7 0111 0111 0111 

+6 0110 0110 0110 

+5 0101 0101 0101 

+4 0100 0100 0100 

+3 0011 0011 0011 

+2 0010 0010 0010 

+1 0011 0011 0011 

+0 0000 0000 0000 

 
-0 -- 1111 1000 

-1 1111 1110 1001 

-2 1110 1101 1010 

-3 1101 1100 1011 

-4 1100 1011 1100 

-5 1011 1010 1101 

-6 1010 1001 1110 

-7 1001 1000 1111 

8 1000 -- -- 
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Methods of obtaining 2’s comp of a no: 
 

• In 3 ways 

1. By obtaining the 1‘s comp of the given no. (by changing all 0‘s to 1‘s & 1‘s to 0‘s) & 

then adding 1. 

2. By subtracting the given n bit no N from 2n
 

3. Starting  at  the  LSB  ,  copying  down  each  bit  upto & including the first 1 bit 

encountered , and complimenting the remaining bits. 

Ex: Express -45 in 8 bit 2‘s comp form 

 

+45 in 8 bit form is 00101101 

I method: 

1‘s comp of 00101101 & the add 1 

00101101 

11010010 

+1 

    _ _ _ _ _ _ _ _ _ _ 

 

11010011 is 2‘s comp form 

II method: 
 

Subtract the given no. N from 2n 

2n = 100000000 

Subtract 45= -00101101 

+1 

    _ _ _ 
 

11010011 is 2‘s comp 

III method: 

 
Original no: 00101101 

Copy up to First 1 bit 1 

Compliment remaining : 1101001 

bits 11010011 

Ex: 
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-73.75 in 12 bit 2‘compform     

I method 

01001001.1100 

10110110.0011 

+1 

 

 

10110110.0100 is 2‘s 

II method: 

28 = 100000000.0000 

Sub 73.75=-01001001.1100 

 

 

10110110.0100 is 2‘s comp 

III method : 

Orginalno :  01001001.1100 

Copy up to 1‘st bit  100 

Comp the remaining bits: 10110110.0 

 

 

10110110.0100 

2’s compliment Arithmetic: 

• The 2‘s comp system is used to rep –ve no.s using modulus arithmetic . The word length 

of a computer is fixed. i.e, if a 4 bit no. is added to another 4 bit no  . the result will be  

only of 4 bits. Carry if any , from the fourth bit will overflow called the Modulus 

arithmetic. 

Ex:1100+1111=1011 

• In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there 

is a carry out , ignore it , look at the sign bit  I,e, MSB of the sum term .If  the MSB  is  a 

0, the result is positive.& it is in true binary form. If the MSB is a ` ( carry in or no carry  

at all) the result is negative.& is in its 2‘s comp form. Take its 2‘s comp to find its 

magnitude in binary. 

 
Ex:Subtract 14 from 46 using 8 bit 2‘s comp arithmetic: 

 

+14 

-14 

= 00001110 

= 11110010 
 

2‘s comp 

+46 = 00101110  

-14 =+11110010 2‘s comp form of -14 
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-32  (1)00100000 ignore carry 

Ignore carry , The MSB is 0 . so the result is +ve. & is in normal binary 

form. So the result is +00100000=+32. 

 
EX: Add -75 to +26 using 8 bit 2‘s comp arithmetic 

 
 

+75 

-75 

 = 01001011 

=10110101 

 
2‘s comp 

+26 

-75 

 = 00011010 

=+10110101 

 

2‘s comp form of -75 

-49  11001111 No carry 

 
No carry , MSB is a 1, result is _ve & is in 2‘s comp. The magnitude is 2‘s comp of 

11001111. i.e, 00110001 = 49. so result is -49 

 
Ex: add -45.75 to +87.5 using 12 bit arithmetic 

+87.5 = 01010111.1000 

-45.75=+11010010.0100 

 

 
-41.75 (1)00101001.1100 ignore carry 

MSB is 0, result is +ve. =+41.75 

1’s compliment of n number: 

• It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a 

no, is subtracting each bit of the no. form 1.This complemented value rep the – 

ve of the original no. One of the difficulties of using 1‘s comp is  its rep o f  

zero. Both 00000000 & its 1‘s comp 11111111 rep zero. 

• The 00000000 called +ve zero& 11111111 called –ve zero. 

Ex: -99 & -77.25 in 8 bit 1‘s comp 
 

+99 = 01100011 

-99 = 10011100 

 
+77.25 = 01001101.0100 

-77.25 = 10110010.1011 

1’s compliment arithmetic: 

In 1‘s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If there is a 

carryout , bring the carry around & add it to the LSB called the end around carry. Look at the 

sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSB is a 1 ( carry or no 

carry ), the result is –ve & is in its is comp form .Take its 1‘s comp to get the magnitude inn 

binary. 
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Ex: Subtract 14 from 25 using 8 bit 1‘s EX: ADD -25 to +14 
 

25 = 00011001 +14 = 00001110 

-45 = 11110001 -25 =+11100110 

+11 (1)00001010 

 
+1 

-11 11110100 

   No carry MSB =1 

  00001011 result=-ve=-1110 

MSB is a 0 so result is +ve (binary ) 

 
=+1110 

Binary codes 

 
Binary codes are codes which are represented in binary system with modification from the 

original ones. 

 Weighted Binary codes 

 Non Weighted Codes 

Weighted binary codes are those which obey the positional weighting principles, each 

position of the number represents a specific weight. The binary counting sequence is 

an example. 

 
 

Reflective Code 

 
A code is said to be reflective when code for 9 is complement for the code for 0, and 
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so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are 

reflective, whereas the 8421 code is not. 

 
Sequential Codes 

 
A code is said to be sequential when two subsequent codes, seen as numbers in binary 

representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and 

Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not. 

 

Non weighted codes 

 
Non weighted codes are codes that are not positionally weighted. That is, each  

position within the binary number is not assigned a fixed value. Ex: Excess-3 code 

 
Excess-3 Code 

 
Excess-3 is a non weighted code used to express decimal numbers. The code derives 

its name from the fact that each binary code is the corresponding 8421 code plus 

0011(3). 

 

Gray Code 

 
The gray code belongs to a class of codes called minimum change codes,  in 

which only one bit in the code changes when moving from one code to the next. The 

Gray code is non-weighted code, as the position of bit does not contain any weight. 

The gray code is a reflective digital code which has the special property that any two 

subsequent numbers codes differ by only one bit. This is also called a unit- distance 

code. In digital Gray code has got a special place. 
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Binary to Gray Conversion 

 
Gray Code MSB is binary code MSB. 

 Gray Code MSB-1 is the XOR of binary code MSB and MSB-1. 

MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code. 

MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code. 

8421 BCD code ( Natural BCD code): 

 
Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes. 

Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful 

for mathematical operations. The advantage of this code is its case of conversion to & from 

decimal. It is less efficient than the pure binary, it require more bits. 

Ex: 14→1110 in binary 

 
But as 0001 0100 in 8421 ode. 

 
The disadvantage of the BCD code is that , arithmetic operations are more complex than 

they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in 

these codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is, 

the rules of binary addition 8421 no, but only to the individual 4 bit groups. 

BCD Addition: 

 
It is individually adding the corresponding digits of the decimal no,s expressed in 

4 bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal 

code , no correction is needed .If there is a carry out of one group to the next group or if the sum 

term is an illegal code then 610(0100) is added to the sum term of that group & the resulting carry 

is added to the next group. 

 

 
Ex: Perform decimal additions in 8421 code 

(a)25+13 

In BCD 25= 0010 0101 

In BCD +13  =+0001 0011 

 

 
38 0011 1000 

No carry , no illegal code .This is the corrected sum 
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(b). 679.6 + 536.8 
 

679.6 = 0110   0111 1001 .0110 in BCD 

+536.8 = +0101  0011 0010 .1000 in BCD 

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

1216.4 1011   1010 0110 . 1110  illegal codes 

 +0110 + 0011 +0110 . + 0110 add 0110 to each 

(1)0001 (1)0000 (1)0101 . (1)0100 propagate carry 

/  /  /  /   

 +1 +1  +1  +1   

0001 0010 0001  0110 . 0100 

 
1 2 1 6 . 4 

 
 

BCD Subtraction: 

 
Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from 

the corresponding 4- bit group of the minuend in binary starting from the LSD . if there is no 

borrow from the next group , then 610(0110)is subtracted from the difference term of this group. 

(a)38-15 
 
 

In BCD 38= 0011 1000 

In BCD -15 = -0001 0101 

 

 
23 0010 0011 

No borrow, so correct difference. 

 
.(b) 206.7-147.8 

 
 

206.7 = 0010 0000 0110 . 0111 in BCD 

-147.8 = -0001  0100 0111 . 0110 in BCD 

    _ _     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

58.9 0000 1011 1110 . 1111 borrows are present 

-0110 -0110 . -0110 subtract 0110 

 

 
0101 1000 . 1001 
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BCD Subtraction using 9’s & 10’s compliment methods: 

 
Form the 9‘s & 10‘s compliment of the decimal subtrahend & encode that no. in 

the 8421 code . the resulting BCD no.s are then added. 

EX: 305.5 – 168.8 

 
305.5  = 305.5 

-168.8= +83.1 9‘s comp of -168.8 

    _ _ 
 

(1)136.6 

+1 end around carry 

 

 
8.8 in BCD 

 

 

 

 

 

 
 

(1)0001 0011 0110 . 0110 

+1 End around carry 

 

 

0001 0011 0110 . 0111 

= 136.7 

Excess three(xs-3)code: 

 
It is a non-weighted BCD code .Each binary codeword is the corresponding 8421 

codeword plus 0011(3).It is a sequential code & therefore , can be used for arithmetic 

operations..It is a self-complementing code.s o the subtraction by the method of compliment 

addition is more direct in xs-3 code than that in 8421 code. The xs-3 code has six invalid states 

0000,0010,1101,1110,1111.. It has interesting properties when used in addition & subtraction. 

Excess-3 Addition: 

 
Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If 

there is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the 

sum term of those groups ( because when 2 decimal digits are added in xs-3 & there is no carry , 

result in xs-6). If there is a carry out, add 0011 to the sum term of those groups( because when 

there is a carry, the invalid states are skipped and the result is normal binary). 

  136.7   corrected difference 
305.510 = 0011 0000 0101 . 0101 
+831.110 = +1000 0011 0001 . 0001 9‘s comp of 1

6
 

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

 +1011 0011 0110 . 0110 1011 is illegal code 
 +0110   add 0110 
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EX: 37 0110 1010 

+28 +0101 1011 

    _ _ _ _ _ _ _ _ _ _ 
 

65 1011 (1)0101 carry generated 

+1 propagate carry 

    _ _ _ _ _ _ 
 

1100 0101 add 0011 to correct 0101 & 

-0011 +0011 subtract 0011 to correct 1100 

    _ _ _ _ _ _ _ _ 
 

1001 1000 =6510 
 

Excess -3 (XS-3) Subtraction: 

 
Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from the 

corresponding 4 bit group of the minuend starting form the LSD .if there is no borrow from the 

next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are 

subtracted in xs-3 & there is no borrow , result is normal binary). I f there is a borrow , subtract 

0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid states , 

result is in xs-6) 

Ex: 267-175 

 
267 = 0101 1001 1010 

-175= -0100 1010 1000 

    _ _ _ _ _ _ _ _ 
 

0000 1111 0010 

+0011 -0011  +0011 

 

 
0011   1100 +0011 =9210 
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Xs-3 subtraction using 9’s & 10’s compliment methods: 

Subtraction is performed by the 9‘s compliment or 10‘s compliment 

Ex:687-348 The subtrahend (348) xs -3 code & its compliment are: 

9‘s comp of 348 = 651 

Xs-3 code of 348 = 0110 0111 1011 

1‘s comp of 348 in xs-3 = 1001 1000 0100 

Xs=3 code of 348 in xs=3 = 1001 1000 0100 
 
 

687  687 

-348 → +651 9‘s compl of 348 

339 ( 1)338 

+1 end around carry 

   _ 
 

 

339 corrected difference in decimal 
 

 

    _ _ _ _ _ _ _ _ _ _ 

_ (1)0010 (1)0011 1110 carry generated 

⁄⁄ 

+1 +1 propagate carry 

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- 
 

(1)0011 0010 1110 

+1 end around carry 

    _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 

 
0011 0011 1111 (correct 1111 by sub0011 and 

+0011 

    _ _ _ 

+0011 

_ _ _ _ 

_ _ 

+0011 correct both groups of 0011 by 

_ _   _ adding 0011) 

 

0110 0110 1100 corrected diff in xs-3 = 33010 

 

 

 

 

1001 1011 1010 687 in xs-3 
+1001 1000 0100 1‘s comp 348 in xs-3 
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The Gray code (reflective –code): 

 
Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a 

BCD code . It is a cyclic code because successive code words in this code differ in one  bit 

position only i.e, it is a unit distance code.Popular of the unit distance code.It is also a reflective 

code i.e,both reflective & unit distance. The n least significant bits for 2n through 2n+1-1 are the 

mirror images of thosr for 0 through 2n-1.An N bit gray code can be obtained by reflecting an N- 

1 bit code about an axis at the end of the code, & putting the MSB of 0 above the axis & the 

MSB of 1 below the axis. 

Reflection of gray codes: 
 

Gray Code  
Decimal 

 
4 bit 

 
binary 1 bit 2 bit 3 bit 4 bit 

0 00 000 0000 0 0000 

1 01 001 0001 1 0001 

 11 011 0011 2 0010 

10 010 0010 3 0011 

  110 0110 4 0100 

111 0111 5 0101 

101 0101 6 0110 

110 0100 7 0111 

   1100 

1101 

1111 

1110 

1010 

1011 

1001 

1000 

8 

9 

10 

11 

12 

13 

14 

15 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 
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Binary codes block diagram 

 
Error – Detecting codes: When binary data is transmitted & processed,it is susceptible to noise 

that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital 

systems must be accurate to the digit, error can pose a problem. Several schemes have been 

devised to detect the occurrence of a single bit error in a binary word, so that whenever such an 

error occurs the concerned binary word can be corrected & retransmitted. 

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as parity 

bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd parity, the 

parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit in the word 

including the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the 

transmitter such that the parity bit is an even no. 

 
Decimal 8421 code Odd parity Even parity 

0 0000 1 0 

1 0001 0 1 

2 0010 0 1 

3 0011 1 0 

4 0100 0 1 

5 0100 1 0 

6 0110 1 0 

7 0111 0 1 

8 1000 0 1 

9 1001 1 0 
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When the digit data is received . a parity checking circuit generates an error signal if the 

total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check 

can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd 

parity is used more often than even parity does not detect the situation. Where all 0‘s are created 

by a short ckt or some other fault condition. 

 
Ex: Even parity scheme 

(a)  10101010  (b)  11110110 (c)10111001 

Ans: 

(a) No. of 1‘s in the word is even  is 4 so there is no error 

(b) No. of 1‘s in the word is even  is 6 so there is no error 

(c) No. of 1‘s in the word is odd is 5 so there is error 

 
Ex: odd parity 

(a)10110111 (b) 10011010 (c)11101010 

 
 

Ans: 

(a) No. of 1‘s in the word is even is 6 so word has  error 

(b) No. of 1‘s in the word is even  is 4 so word has error 

(c) No. of 1‘s in the word is odd is 5 so there is no error 

 
 

Checksums: 

 
Simple parity can‘t detect two errors within the same word. To overcome this, use a sort 

of 2 dimensional parity. As each word is transmitted, it is added to the sum of the previously 

transmitted words, and the sum retained at the transmitter end. At the end of transmission, the 

sum called the check sum. Up to that time sent to the receiver. The receiver can check its sum 

with the transmitted sum. If the two sums are the same, then no errors were detected at the 

receiver end. If there is an error, the receiving location can ask for retransmission of the entire 

data, used in teleprocessing systems. 

 
 

Block parity: 

 
Block of data shown is create the row & column parity bits for the data using odd parity. 

The parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each 

column & row including the data bits & parity bit is odd as 
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Error –Correcting Codes: 

 
A code is said to be an error –correcting code, if the code word can always be deduced 

from an erroneous word. For a code to be a single bit error correcting code, the  minimum 

distance of that code must be three. The minimum distance of that code is the smallest no. of bits 

by which any two code words must differ. A code with minimum distance of 3 can‘t only correct 

single bit errors but also detect ( can‘t correct) two  bit  errors, The  key to error correction is that 

it must be possible to detect & locate erroneous that it must be possible to detect & locate 

erroneous digits. If the location of an error has been determined. Then by complementing the 

erroneous digit, the message can be corrected , error correcting , code is the Hamming code , In 

this , to each group of m information or message or data bits, K parity checking bits denoted by 

P1,P2,----------pk located at positions 2 k-1 from left are added to form an (m+k) bit code word.  

To correct the error, k parity checks are performed on selected digits of each code word, & the 

position of the error bit is located by forming an error word, & the error bit is then  

complemented. The k bit error word is generated by putting a 0 or a 1 in the 2 k-1th position 

depending upon whether the check for parity involving the parity bit Pk is satisfied or not.Error 

positions & their corresponding values : 

data 

10110 

10001 

10101 

00010 

11000 

00000 

11010 

 

Data Parity bit 

10110 0 

10001 1 

10101 0 

00010 0 

11000 1 

00000 1 

11010 0 
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Error Position For 15 bit code 

C4 C3 C2 C1 

For 12 bit code 

C4 C3 C2 C1 

For 7 bit code 

C3 C2 C1 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 0 0 1 

2 0 0 1 0 0 0 1 0 0 1 0 

3 0 0 1 1 0 0 1 1 0 1 1 

4 0 1 0 0 0 1 0 0 1 0 0 

5 0 1 0 1 0 1 0 1 1 0 1 

6 0   1 1 0 0   1 1 0 1 1 0 

7 0   1 1 1 0   1 1 1 1 1 1 

8 1   0   0 0 1   0   0 0  

9 1   0 0 1 1   0 0 1  

10 1   0 1 0 1   0 1 0  

11 1   0 1 1 1   0 1 1  

12 1   1 0 0 1   1 0 0  

13 1 1 0 1   

14 1 1 1 0   

15 1 1 1 1   

 

7- bit Hamming code: 

To transmit four data bits, 3 parity bits located at positions 20 21&22 from left are 

added to make a 7 bit codeword which is then transmitted. 

The word format 
 

P1 P2 D3 P4 D5 D6 D7 

D—Data bits P- 

Parity bits 

 
Decimal Digit For BCD 

P1P2D3P4D5D6D7 

For Excess-3 

P1P2D3P4D5D6D7 

0 0 0   0 0   0  0 0 1 0   0 0   0  1 1 

1 1 1   0 1   0  0 1 1 0   0 1   1  0 0 

2 0 1   0 1   0  1 1 0 1 0   0  1  0 1 

3 1 0   0 0   0  1 1 1 1   0 0   1  1 0 

4 1 0   0 1   1  0 0 0 0   0 1   1 1 1 

5 0 1 0   0  1  0 1 1 1   1 0   0 0 0 

6 1 1   0 0   1  1 0 0 0   1 1   0 0 1 

7 0 0   0 1   1 1 1 1 0   1 1 0 1 0 

8 1 1   1 0   0 0 0 0 1   1 0 0 1 1 

9 0 0   1 1   0 0 1 0 1   1 1 1 0 0 
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Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code 

The bit pattern is 

P1P2D3P4D5D6D7 
 

1 1 0 1 

 
Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1 

Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0 

Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0 

The final code is 1010101 

EX: Code word is 1001001 

Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0 

Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1 

Bits 4,5,6,7 (C4 1001)) →no error →put a 0 in the 4‘s position→C3=0 

15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 20 21 22 23
 

Word format is 
 

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 D13 D14 D15 

 

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 20 21 22 23
 

Word format is 

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 

 

Alphanumeric Codes: 

 
These codes are used to encode the characteristics of alphabet in addition to the decimal 

digits. It is used for transmitting data between computers & its I/O device such as printers, 

keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code & 

EBCDIC code. 
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Digital Logic Gates 
 

Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to 

implement a Boolean function with these type of gates. 
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Properties of XOR Gates 
 

• XOR (also ) : the “not-equal” function 

• XOR(X,Y) = X  Y = X’Y + XY’ 
• Identities: 

– X  0 = X 

– X  1 = X’ 

– X  X = 0 

– X  X’ = 1 
• Properties: 

– X  Y = Y  X 

– (X  Y)  W = X  ( Y  W) 

 

Universal Logic Gates 
 

NAND and NOR gates are called Universal gates. All fundamental gates (NOT, AND, OR) can be 
realized by using either only NAND or only NOR gate. A universal gate provides flexibility and 
offers enormous advantage to logic designers. 

 
NAND as a Universal Gate 

NAND Known as a “universal” gate because ANY digital circuit can be implemented with NAND 
gates alone. 
To prove the above, it suffices to show that AND, OR, and NOT can be implemented using 
NAND gates only. 
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Boolean Algebra: In 1854, George Boole developed an algebraic system now called Boolean algebra. In 

1938, Claude E. Shannon introduced a two‐valued Boolean algebra called switching algebra that 

represented the properties of bistable electrical switching circuits. For the formal definition of Boolean 

algebra, we shall employ the postulates formulated by E. V. Huntington in 1904. 

Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set of 

elements (0, 1), two binary operators called OR, AND, and one unary operator NOT. It is the basic 

mathematical tool in the analysis and synthesis of switching circuits. It is a way to express logic functions 

algebraically.  

 Boolean algebra, like any other deductive mathematical system, may be defined with aset of elements, a 

set of operators, and a number of unproved axioms or postulates. A set of elements is anycollection of 

objects having a common property. If S is a set and x and y are certain objects, then x Î Sdenotes that x is 

a member of the set S, and y ÏS denotes that y is not an element of S. A set with adenumerable number of 

elements is specified by braces: A = {1,2,3,4}, i.e. the elements of set A are thenumbers 1, 2, 3, and 4. A 

binary operator defined on a set S of elements is a rule that assigns to each pair ofelements from S a 

unique element from S._ Example: In a*b=c, we say that * is a binary operator if it specifies a rule for 

finding c from the pair (a,b)and also if a, b, c Î S.  

 Axioms and laws of Boolean algebra 

 

Axioms or Postulates of Boolean algebra are a set of logical expressions that we accept without proof and 

upon which we can build a set of useful theorems. 

 

 AND Operation OR Operation NOT Operation 

Axiom1 : 0.0=0 0+0=0 0=1 

Axiom2: 0.1=0 0+1=1 1=0 

Axiom3: 1.0=0 1+0=1  
Axiom4: 1.1=1 1+1=1  

 
 

AND Law OR Law 

Law1: A.0=0 (Null law) Law1: A+0=A 
Law2: A.1=A (Identity law) Law2: A+1=1 
Law3: A.A=A (Impotence law) Law3: A+A=A (Impotence law) 

 

CLOSURE: The Boolean system is closed with respect to a binary operator if for every pair of 

Boolean values,it produces a Boolean result. For example, logical AND is closed in the Boolean 

system because it accepts only Boolean operands and produces only Boolean results. 

_ A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary 

operator specifies a rule for obtaining a unique element of S. 

_ For example, the set of natural numbers N = {1, 2, 3, 4, … 9} is closed with respect to the 

binary operator plus (+) by the rule of arithmetic addition, since for any a, b Î N we obtain a 

unique c Î N by the operation a + b = c. 
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ASSOCIATIVE LAW: 

A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y * z) for all x, y, z Î S, 

forall Boolean values x, y and z. 

COMMUTATIVE LAW: 

A binary operator * on a set S is said to be commutative whenever x * y = y * x for all x, y, z є S 

 

IDENTITY ELEMENT: 

A set S is said to have an identity element with respect to a binary operation * on S if there exists an element 

e є S with the property e * x = x * e = x for every x є S 

 

BASIC IDENTITIES OF BOOLEAN ALGEBRA 

• Postulate 1(Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more 

elements and the two operators · and + which refer to logical AND and logical OR •x + 0 = x 

• x  · 0 = 0 

• x + 1 = 1 

• x · 1 = 1 

• x + x = x 

• x · x = x 

• x + x’ = x 

• x · x’ = 0 

• x + y = y + x 

 
• xy = yx 

 
• x + ( y + z ) = ( x + y ) + z 

 
• x (yz) = (xy) z 

 
• x ( y + z ) = xy + xz 

 
• x + yz = ( x + y )( x + z) 

 
• ( x + y )’ = x’ y’ 

 
• ( xy )’ = x’ + y’ 
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• (x’)’ = x 

 
 

 

 

DeMorgan's Theorem 

(a) (a + b)' = a'b' 

(b) (ab)' = a' + b' 

 

Generalized DeMorgan's Theorem  

(a) (a + b + … z)' = a'b' … z' 
(b) (a.b … z)' = a' + b' + … z‘ 
 
Basic Theorems and Properties of Boolean algebra Commutative law 

 

Law1: A+B=B+A Law2: A.B=B.A 
 

Associative law 
 

Law1: A + (B +C) = (A +B) +C Law2: A(B.C) = (A.B)C 
 

Distributive law 
 

Law1:  A.(B + C) = AB+ AC Law2: A + BC = (A + B).(A +C) 
 

Absorption law 

 
Law1: A +AB =A Law2: A(A +B) = A 

Solution: A(1+B) Solution: A.A+A.B 

 A  A+A.B 
   A(1+B) 
   A 

Consensus Theorem 
 

Theorem1. AB+ A’C + BC = AB + A’C Theorem2. (A+B). (A’+C).(B+C) =(A+B).( A’+C) 
 

The BC term is called the consensus term and is redundant. The consensus term is formed from a 

PAIR OF TERMS in which a variable (A) and its complement (A’) are present; the consensus 

term is formed by multiplying the two terms and leaving out the selected variable and its 

complement 

Consensus Theorem1 Proof: 
 

AB+A’C+BC=AB+A’C+(A+A’)BC 

=AB+A’C+ABC+A’BC 
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=AB(1+C)+A’C(1+B) 

= AB+ A’C 
 

Principle of Duality 

Each postulate consists of two expressions statement one expression is transformed into the 
other by interchanging the operations (+) and (⋅) as well as the identity elements 0 and 1. 
Such expressions are known as duals of each other. 
If some equivalence is proved, then its dual is also immediately true. 

 If we prove: (x.x)+(x’+x’)=1, then we have by duality: (x+x)⋅(x’.x’)=0 
 

The Huntington postulates were listed in pairs and designated by part (a) and part (b) in below 
table. 

Table for Postulates and Theorems of Boolean algebra 
Part-A Part-B 

A+0=A A.0=0 

A+1=1 A.1=A 

A+A=A (Impotence law) A.A=A (Impotence law) 

A+ A̅=1 A. A̅=0 
 

 

A̅=A  (double inversion law) -- 

Commutative law: A+B=B+A A.B=B.A 

Associative law: A + (B +C) = (A +B) +C A(B.C) = (A.B)C 

Distributive law: A.(B + C) = AB+ AC A + BC = (A + B).(A +C) 

Absorption law: A +AB =A A(A +B) = A 

DeMorgan Theorem: 
                                   (A+B) =   A̅   . B̅ 

                    
   (A.B) = =   A̅   + B̅ 

Redundant Literal Rule: A+ A̅. B=A+B A.(A̅A+B)=AB 

Consensus Theorem: AB+ A’C + BC = AB + A’C (A+B). (A’+C).(B+C) =(A+B).( A’+C) 

 

Boolean Function 
Boolean algebra is an algebra that deals with binary variables and logic operations. 
A Boolean function described by an algebraic expression consists of binary variables, the 

constants 0 and 1, and the logic operation symbols. 

For a given value of the binary variables, the function can be equal to either 1 or 0. 

F(vars) = expression 

Set of binary Variables Operators (+, •, ‘) 
Constants (0, 1) 
Groupings (parenthesis) 
Variables 

Consider an example for the Boolean function 

F1 = x + y’z 
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The function F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is equal to 0 
otherwise. The complement operation dictates that when y’ = 1, y = 0. Therefore, F1 = 1 if x = 1 
or if y = 0 and z = 1. 
A Boolean function expresses the logical relationship between binary variables and is evaluated 
by determining the binary value of the expression for all possible values of the variables. 

A Boolean function can be represented in a truth table. The number of rows in the truth 
table is 2n, where n is the number of variables in the function. The binary combinations for the 
truth table are obtained from the binary numbers by counting from 0 through 2n - 1. 

 
 
 
 

Truth Table for F1 
 
 
 
 

 

Gate Implementation of F1 = x + y’z 
 
 

 
Note: 
Q: Let a function F() depend on n variables. How many rows are there in the truth table of F() ? 
A: 2n rows, since there are 2n possible binary patterns/combinations for the n variables.  
 
Truth Tables 

 

• Enumerates all possible combinations of variable values and the corresponding function 
value 

• Truth tables for some arbitrary functions 
F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the below. 

 

x y z F1 F2 F3 

0 0 0 0 1 1 

0 0 1 0 0 1 

x y z F1 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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0 1 0 0 0 1 

0 1 1 0 1 1 

1 0 0 0 1 0 

1 0 1 0 1 0 

1 1 0 0 0 0 

1 1 1 1 0 1 

 

• Truth table: a unique representation of a Boolean function 

• If two functions have identical truth tables, the functions are equivalent (and vice- 
versa). 

• Truth tables can be used to prove equality theorems. 

• However, the size of a truth table grows exponentially with the number of variables 
involved, hence unwieldy. This motivates the use of Boolean Algebra. 

Boolean expressions-NOT unique 
Unlike truth tables, expressions epresenting 
a Boolean function are NOT unique. 

• Example: 
– F(x,y,z) = x’•y’•z’ + x’•y•z’ + 

x•y•z’ 

– G(x,y,z) = x’•y’•z’ + y•z’ 
• The corresponding truth tables for 

F() and G() are to the right. They are 
identical. 

• Thus, F() = G() 
 
 
 
 
 
 
 
 
 

Algebraic Manipulation (Minimization of Boolean function) 
• Boolean algebra is a useful tool for simplifying digital circuits. 
• Why do it? Simpler can mean cheaper, smaller, faster. 
• Example: Simplify F = x’yz + x’yz’ + xz. 

F= x’yz + x’yz’ + xz 

= x’y(z+z’) + xz 
= x’y•1 + xz 

x y z F G 

0 0 0 1 1 

0 0 1 0 0 

0 1 0 1 1 

0 1 1 0 0 

1 0 0 0 0 

1 0 1 0 0 

1 1 0 1 1 

1 1 1 0 0 
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= x’y + xz 
 

• Example: Prove 

x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’ 
• Proof: 

x’y’z’+ x’yz’+ xyz’ 
= x’y’z’ + x’yz’ + x’yz’ + xyz’ 
= x’z’(y’+y) + yz’(x’+x) 
= x’z’•1 + yz’•1 
= x’z’ + yz’ 

 
Complement of a Function 

• The complement of a function is derived by interchanging (• and +), and (1 and 0), and 

complementing each variable. 

• Otherwise, interchange 1s to 0s in the truth table column showing F. 

• The complement of a function IS NOT THE SAME as the dual of a function. 
Example 

• Find G(x,y,z), the complement of F(x,y,z) = xy’z’ + x’yz 
Ans: G = F’ = (xy’z’ + x’yz)’ 

= (xy’z’)’ • (x’yz)’ DeMorgan 
= (x’+y+z) • (x+y’+z’)  DeMorgan again 

Note: The complement of a function can also be derived by finding the function’s dual, and 
then complementing all of the literals 

 

Canonical and Standard Forms 
 

We need to consider formal techniques for the simplification of Boolean functions. 

Identical functions will have exactly the same canonical form. 

• Minterms and Maxterms 

• Sum-of-Minterms and Product-of- Maxterms 

• Product and Sum terms 

• Sum-of-Products (SOP) and Product-of-Sums (POS) 

 

Definitions 
 

Literal: A variable or its complement 

Product term: literals connected by • 

Sum term: literals connected by + 

Minterm: a product term in which all the variables appear exactly once, either complemented or 

uncomplemented. 
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Maxterm: a sum term in which all the variables appear exactly once, either complemented or 

uncomplemented. 

Canonical form: Boolean functions expressed as a sum of Minterms or product of Maxterms are said to be 
in canonical form. 

 

Minterm 
• Represents exactly one combination in the truth table. 

• Denoted by mj, where j is the decimal equivalent of the minterm’s corresponding binary 

combination (bj). 

• A variable in mj is complemented if its value in bj is 0, otherwise is uncomplemented. 

Example: Assume 3 variables (A, B, C), and j=3. Then, bj = 011 and its corresponding minterm is  denoted  

by mj = A’BC 

Maxterm 
 

• Represents exactly one combination in the truth table. 

• Denoted by Mj, where j is the decimal equivalent of the maxterm’s corresponding binary 
combination (bj). 

• A variable in Mj is complemented if its value in bj is 1, otherwise is uncomplemented. 
 
Example: Assume 3 variables (A, B, C), and j=3. Then, bj = 011 and its corresponding maxterm is denoted  
by Mj = A+B’+C’ 

Truth Table notation for Minterms and Maxterms 

• Minterms and Maxterms are easy to denote using a truth table. 

Example: Assume 3 variables x,y,z (order is fixed) 

 

x y z Minterm Maxterm 

0 0 0 x’y’z’ = m0 x+y+z = M0 

0 0 1 x’y’z = m1 x+y+z’ = M1 

0 1 0 x’yz’ = m2 x+y’+z = M2 

0 1 1 x’yz = m3 x+y’+z’= M3 

1 0 0 xy’z’ = m4 x’+y+z = M4 

1 0 1 xy’z = m5 x’+y+z’ = M5 

1 1 0 xyz’ = m6 x’+y’+z = M6 

1 1 1 xyz = m7 x’+y’+z’ = M7 

 

Canonical Forms 
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• Every function F() has two canonical forms: 

– Canonical Sum-Of-Products (sum of minterms) 

– Canonical Product-Of-Sums (product of maxterms) 

Canonical Sum-Of-Products: 

The minterms included are those mj such that F( ) = 1 in row j of the truth table for F( ). 

Canonical Product-Of-Sums: 

The maxterms included are those Mj such that F( ) = 0 in row j of the truth table for F( ). 

 
Example 

Consider a Truth table for f1(a,b,c) at right 

The canonical sum-of-products form for f1 is 

f1(a,b,c) = m1 + m2 + m4 + m6 

= a’b’c + a’bc’ + ab’c’ + abc’ 

The canonical product-of-sums form for f1 is 

f1(a,b,c) = M0 • M3 • M5 • M7 

= (a+b+c)•(a+b’+c’)• (a’+b+c’)•(a’+b’+c’). 

 
• Observe that: mj = Mj’ 

a b c f1 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 
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Shorthand: ∑ and ∏ 

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and m(1,2,4,6) 

indicates that the minterms to be included are m1, m2, m4, and m6. 

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form, and M(0,3,5,7) 

indicates that the maxterms to be included are M0, M3, M5, and M7. 

• Since mj = Mj’ for any j, 

∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c) 

• 

Conversion between Canonical Forms 

• Replace ∑ with ∏ (or vice versa) and replace those j’s that appeared in the original form with those 

that do not. 

• Example: 

f1(a,b,c)= a’b’c + a’bc’ + ab’c’ + abc’ 

= m1 + m2 + m4 + m6 

= ∑(1,2,4,6) 

= ∏(0,3,5,7) 

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’) 

Standard Forms 

 
Another way to express Boolean functions is in standard form. In this configuration, the terms that form 

the function may contain one, two, or any number of literals. 

There are two types of standard forms: the sum of products and products of sums. 

The sum of products is a Boolean expression containing AND terms, called product terms, with one or 

more literals each. The sum denotes the ORing of these terms. An example of a function expressed as a 

sum of products is 

F1 = y’ + xy + x’yz’ 

The expression has three product terms, with one, two, and three literals. Their sum is, in effect, an OR 

operation. 

A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any 

number of literals. The product denotes the ANDing of these terms. An example of a function expressed as 

a product of sums is 

F2 = x(y’ + z)(x’ + y + z’) 

This expression has three sum terms, with one, two, and three literals. The product is an AND operation. 
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Conversion of SOP from standard to canonical form 

Example-1. 

Express the Boolean function F = A + B’C as a sum of minterms. 

Solution: The function has three variables: A, B, and C. The first term A is missing two variables; therefore, 

A = A(B + B’) = AB + AB’ 

This function is still missing one variable, so 

A = AB(C + C’) + AB’ (C + C’) 

= ABC + ABC’ + AB’C + AB’C’ 

The second term B’C is missing one variable; hence, 

B’C = B’C(A + A’) = AB’C + A’B’C 

Combining all terms, we have 

F = A + B’C 

= ABC + ABC’ + AB’C + AB’C’+ A’B’C 

But AB’C appears twice, and according to theorem (x + x = x), it is possible to remove one of those 

occurrences. Rearranging the minterms in ascending order, we finally obtain 

F = A’B’C + AB’C + AB’C + ABC’ + ABC 

= m1 + m4 + m5 + m6 + m7 

When a Boolean function is in its sum‐of‐minterms form, it is sometimes convenient to express the 

function in the following brief notation: 

F(A, B, C) = ∑m (1, 4, 5, 6, 7) 

 
Example-2. 

Express the Boolean function F = xy + x’z as a product of maxterms. 

Solution: First, convert the function into OR terms by using the distributive law: 

F = xy + x’z = (xy + x’)(xy + z) 

= (x + x’)(y + x’)(x + z)(y + z) 

= (x’+ y)(x + z)(y + z) 

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore, 

x’+ y = x’ + y + zz’ = (x’ + y + z)(x’ + y + z’) 

x + z = x + z + yy’ = (x + y + z)(x + y’ + z) 

y + z = y + z + xx’ = (x + y + z)(x’ + y + z) 

Combining all the terms and removing those which appear more than once, we finally obtain 

F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z) 

F= M0M2M4M5 

A convenient way to express this function is as 

follows: F(x, y, z) = πM(0, 2, 4, 5) 

The product symbol, π, denotes the ANDing of maxterms; the numbers are the indices of the maxterms of 

the function. 
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Unit-II 
 

Minimization Techniques 

Two-variable k-map: 

A two-variable k-map can have 22=4 possible combinations of the input variables A and 

B. Each  of  these  combinations,     ,    B,A     ,AB(in  the  SOP  form)  is  called  a  minterm.  

The minterm may be represented in terms of their decimal designations – m0 for     , m1 for  

B,m2 for A and m3 for AB, assuming that A represents the MSB.  The letter m stands for 

minterm and the subscript represents the decimal designation of the minterm. The presence or 

absence of a minterm in the expression indicates that the output of the logic circuit assumes logic 

1 or logic 0 level for that combination of input variables. 

The expression f= ,+ B+A  +AB , it can  be expressed using min 

term as F= m0+m2+m3=∑m(0,2,3) 

Using Truth Table: 
 

Minterm Inputs 
A B 

Output 
F 

0 0 0 1 

1 0 1 0 

2 1 0 1 

3 1 1 1 

A 1 in the output contains that particular minterm in its sum and a 0 in that column indicates that 

the particular mintermdoes not appear in the expression for output . this information can also be 

indicated by a two-variable k-map. 

Mapping of SOP Expresions: 
 

A two-variable k-map has 22=4 squares .These squares are called cells. Each square on the k- 

map represents a unique minterm. The minterm designation of the squares are placed in any 

square, indicates that the corresponding minterm does output expressions. And a 0 or no entry in 

any square indicates that the corresponding minterm does not appear in the expression for output. 

 

 
The minterms of a two-variable k-map 
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The mapping of the expressions =∑m(0,2,3)is 

 

 

k-map of ∑m(0,2,3) 
 

EX: Map the expressions f= B+A 

F= m1+m2=∑m(1,2)The k-map is 

 

Minimizations of SOP expressions: 
 

To minimize Boolean expressions given in the SOP form by using the k-map, look for 

adjacent adjacent squares having 1‘s minterms adjacent to each other, and combine them to form 

larger squares to eliminate some variables. Two squares are said to be adjacent to each other, if 

their minterms differ in only one variable. (i.e,    B & A    differ only in one variable. so they may 

be combined to form a 2-square to eliminate the variable B.similarly all other. 

The necessary condition for adjacency of minterms is that their decimal designations must 

differ by a power of 2. A minterm can be combined with any number of minterms adjacent to it 

to form larger squares. Two minterms which are adjacent to each other can be combined to form 

a bigger square called a 2-square or a pair. This eliminates one variable – the variable that is not 

common to both the minterms. For EX: 

m0 and m1 can be combined to yield, 
 

f1 = m0+m1= + B= (B+  

)= m0 and m2 can be combined to yield, 
 

f2  = m0+m2=    +     =   (    +     )= 

m1 and m3 can be combined to yield, 
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f3= m1+m3= B+AB=B( + )=B 

m2 and m3 can be combined to yield, 

f4 = m2+m3=A +AB=A(B+ )=A 

m0 ,m1 ,m2 and m3 can be combined to yield, 
 

=      +      +A  +AB 
 

=   (B+   ) +A(B+  ) 
 

= +A 

=1 
 

 
f1= f2= f3=B f4=A f5=1 

The possible minterm groupings in a two-variable k-map. 

Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square 

eliminates 2 variables. A 4-square is called a quad. To read the squares on the map after 

minimization, consider only those variables which remain constant through the square, and 

ignore the variables which are varying. Write the non complemented variable if the variable is 

remaining constant as a 1, and the complemented variable if the variable is remaining constant as 

a 0, and write the variables as a product term. In the above figure f1 read as , because, along the 

square , A remains constant as a 0, that is , as , where as B is changing from 0 to 1. 

EX:  Reduce the minterm f= +A  +AB using mapping Expressed in terms of minterms, the 

given expression is F=m0+m1+m2+ m3=m∑(0,1,3)& the figure shows the k-map for f and its 

reduction . In one 2-square, A is constant as a 0 but B varies from a 0 to a 1, and in the other 2- 

square, B is constant as a 1 but A varies from a 0 to a 1. So, the reduced expressions is +B. 

 

It requires two gate inputs for realization as    

f=   +B (k-map in SOP form, and logic diagram.) 
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The main criterion in the design of a digital circuit is that its cost should be as low as 

possible. For that the expression used to realize that circuit must be minimal.Since the cost is 

proportional to number of gate inputs in the circuit in the circuit, an expression is considered 

minimal only if it corresponds to the least possible number of gate inputs. & there is no 

guarantee for that k-map in SOP is the real minimal. To obtain real minimal expression, obtain 

the minimal expression both in SOP & POS form form by using k-maps and take the minimal of 

these two minimals. 

The 1‘s on the k-map indicate the presence of minterms in the output expressions, where 

as the 0s indicate the absence of minterms .Since the absence of a minterm in the SOP expression 

means the presense of the corresponding maxterm in the POS expression of the same .when a 

SOP expression is plotted on the k-map, 0s or no entries on the k-map represent the maxterms. 

To obtain the minimal expression in the POS form, consider the 0s on the k-map and follow the 

procedure used for combining 1s. Also, since the absence of a maxterm in the POS expression 

means the presence of the corresponding minterm in the SOP expression of the same , when a 

POS expression is plotted on the k-map, 1s or no entries on the k-map represent the minterms. 

Mapping of POS expressions: 
 

Each sum term in the standard POS expression is called a maxterm. A function in two 

variables (A, B) has four possible maxterms, A+B,A+ , +B, +  

. They are represented as M0, M1, M2, and M3respectively. The uppercase letter M stands for 

maxterm and its subscript denotes the decimal designation of that maxterm obtained by treating 

the non-complemented variable as a 0 and the complemented variable as a 1 and putting them 

side by side for reading the decimal equivalent of the binary number so formed. 

For mapping a POS expression on to the k-map, 0s are placed in the squares 

corresponding to the maxterms which are presented in the expression an d1s are placed in the 

squares corresponding to the maxterm which are not present in the expression. The decimal 

designation of the squares of the squares for maxterms is the same as that for the minterms. A 

two-variable k-map & the associated maxterms are asthe maxterms of a two-variable k-map 

The possible maxterm groupings in a two-variable k-map 
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Minimization of POS Expressions: 
 

To obtain the minimal expression in POS form, map the given POS expression on to the 

K-map and combine the adjacent 0s into as large squares as possible. Read the squares putting 

the complemented variable if its value remains constant as a 1 and the non-complemented 

variable if its value remains constant as a 0 along the entire square ( ignoring the variables which 

do not remain constant throughout the square) and then write them as a sum term. 

Various maxterm combinations and the corresponding reduced expressions are shown in 
figure. In this f1 read as A because A remains constant as a 0 throughout the square and B 
changes from a 0 to a 1. f2 is read as B‘ because B remains constant along the square as a 1 and  
A changes from a 0 to a 1. f5 

Is read as a 0 because both the variables are changing along the square. 
 

Ex: Reduce the expression f=(A+B)(A+B‘)(A‘+B‘) using mapping. 

 

The given expression in terms of maxterms is f=πM(0,1,3). It requires two gates inputs 

for realization of the reduced expression as 
 

F=AB‘ 
K-map in POS form and logic diagram 

 

In this given expression ,the maxterm M2 is absent. This is indicated by a 1 on the k-map. The 
corresponding SOP expression is ∑m2 or AB‘. This realization is the same as that for the POS 
form. 

 

Three-variable K-map: 

 

A function in three variables (A, B, C) expressed in the standard SOP form can have eight 

possible combinations: A B C , AB C,A BC ,A BC,AB C ,AB C,ABC , and ABC. Each one of these 

combinations designate d by m0,m1,m2,m3,m4,m5,m6, and m7, respectively, is called a 

minterm. A is the MSB of the minterm designator and C is the LSB. 

In the standard POS  form,  the  eight  possible  combinations  are:A+B+C,  A+B+C  ,  
A+B +C,A+B + C ,A + B+ C,A + B + C ,A + B + C,A + B + C . Each oneof these combinations 

designated by M0, M1, M2, M3, M4, M5, M6, and M7respectively is called a maxterm. A is the 

MSB of the maxterm designator and C is the LSB. 

A three-variable k-map has, therefore, 8(=23) squares or cells, and each square on the  
map represents a minterm or maxterm as shown in figure. The small number on the top right 

corner of each cell indicates the minterm or maxterm designation. 
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The three-variable k-map. 

 

The binary numbers along the top of the map indicate the condition of B and C for each 

column. The binary number along the left side of the map against each row indicates the 

condition of A for that row. For example, the binary number 01 on top of the second column in 

fig indicates that the variable B appears in complemented form and the variable C in non- 

complemented form in all the minterms in that column. The binary number 0 on the left of the 

first row indicates that the variable A appears in complemented form in all the minterms in that 

row, the binary numbers along the top of the k-map are not in normal binary order. They are, 

infact, in the Gray code. This is to ensure that twophysically adjacent squares are really adjacent, 

i.e., their minterms or maxterms differ by only one variable. 

 
 

Ex: Map the expression f=:       C+         +        +        +ABC 

 
In   the   given   expression   ,   the   minterms   are  :        C=001=m1 ; =101=m5; 

     =010=m2; 
 

    =110=m6;ABC=111=m7. 

So the expression is f=∑m(1,5,2,6,7)= ∑m(1,2,5,6,7). The corresponding k-map is 
 

 

K-map in SOP form 

 
 

Ex: Map the expression f= (A+B+C),( + + ) ( + + )(A + + )( + + ) 
 

In the given expression the maxterms are 

:A+B+C=000=M0; + + =101=M5; + + = 111=M7; A + + =011=M3; + + 
 =110=M6. 

So the expression is f = π M (0,5,7,3,6)= π M (0,3,5,6,7). The mapping of the expression is 
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K-map in POS form. 

 
 

Minimization of SOP and POS expressions: 

 

For reducing the Boolean expressions in SOP (POS) form plotted on the k-map, look 

at the 1s (0s) present on the map. These represent the minterms (maxterms). Look for the 

minterms (maxterms) adjacent to each other, in order to combine them into larger squares. 

Combining of adjacent squares in a k-map containing 1s (or 0s) for the purpose of simplification 

of a SOP (or POS)expression is called looping. Some of the minterms (maxterms) may have 

many adjacencies. Always start with the minterms (maxterm) with the least number of 

adjacencies and try to form as large as large a square as possible. The larger must form a 

geometric square or rectangle. They can be formed even by wrapping around, but cannot be 

formed by using diagonal configurations. Next consider the minterm (maxterm) with next to the 

least number of adjacencies and form as large a square as possible. Continue this till all the 

minterms (maxterms) are taken care of . A minterm (maxterm) can be part of any number of 

squares if it is helpful in reduction. Read the minimal expression from the k-map, corresponding 

to the squares formed. There can be more than one minimal expression. 

Two squares are said to be adjacent to each other (since the binary designations along 

the top of the map and those along the left side of the map are in Gray code), if they are 

physically adjacent to each other, or can be made adjacent to each other by wrapping around. 

For squares to be combinable into bigger squares it is essential but not sufficient that their 

minterm designations must differ by a power of two. 

 
General procedure to simplify the Boolean expressions: 

1. Plot the k-map and place 1s(0s) corresponding to the minterms (maxterms) of the SOP 

(POS) expression. 

2. Check the k-map for 1s(0s) which are not adjacent to any other 1(0). They are isolated 

minterms(maxterms) . They are to be read as they are because they cannot be combined 

even into a 2-square. 

3. Check for those 1s(0S) which are adjacent to only one other 1(0) and make them pairs (2 

squares). 

4. Check for quads (4 squares) and octets (8 squares) of adjacent 1s (0s) even if they contain 

some 1s(0s) which have already been combined. They must geometrically form a square 

or a rectangle. 

5. Check for any 1s(0s) that have not been combined yet and combine them into bigger 

squares if possible. 

6. Form the minimal expression by summing (multiplying) the product the product (sum) 

terms of all the groups. 

Reading the K-maps: 
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While reading the reduced k-map in SOP (POS) form, the variable which remains 

constant as 0 along the square is written as the complemented (non-complemented) variable and 

the one which remains constant as 1 along the square is written as non-complemented 

(complemented) variable and the term as a product (sum) term. All the product (sum) terms are 

added (multiplied). 

Some possible combinations of minterms and the corresponding minimal expressions 
readfrom the k-maps are shown in fig: Here f6 is read as 1, because along the 8-square no  

variable remains constant. F5  is read as      , because, along the 4-square formed by0,m1,m2     and 
m3 , the variables B and C are changing, and A remains constant as a 0. Algebraically, 

f5= m0+m1+m2+m3 

=         +     C+         +     
=       (    +C)+    B(C+ ) 

=       +  B 

=    (   +B)=  
 
 

 

f3  is read as   +    ,  because in the 4-square formed by m0,m2,m6, and m4, the variable A and  B 

are changing , where as the variable C remains constant as a 0. So it is read as . In the 4-square 

formed by m0, m1, m4, m5, A and C are changing but B remains constant as a 0. So it is read as  

. So, the resultant expression for f3 is the sum of these two, i.e., + . 

f1 is read as       +       +       ,because in the 2-square formed by m0 and m4 , A is changing from a 0 

to a 1. Whereas B and C remain constant as a 0. So it s read as          . In the     2-square formed 

by m0 and m1, C is changing from a 0 to a 1, whereas A and B remain constant as a 0. So it is  

read as     .In the 2-square formed  by m0 and m2   , B is changing from a 0 to    a 1 whereas A 

and C remain  constant  as  a  0.  So,  it  is  read  as  .   Therefore,   the   resultant   SOP 

expression is 

   + +   

Some possible maxterm groupings and the corresponding minimal POS expressions read from 

the k-map are 
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In this figure, along the 4-square formed by M1, M3, M7, M5, A and B are changing from a 0 to 

a 1, where as C remains constant as a 1. SO it  is read as   . Along the 4-squad formed by   M3, 

M2, M7, and M6, variables A and C are changing from a 0 to a 1. But B remains constant as a 1. 

So it is read as   . The minimal expression is the product of these two terms , i.e., f1 = (  )(   ).also 

in this figure, along the 2-square formed by M4 and M6 , variable B is changing from a 0 to a 1, 

while variable A remains constant as a 1 and variable C remains constant as a 0.    SO, read  it   

as 

   +C. Similarly, the 2-square formed by M7 andM6 is read as   +    , while the 2-square  formed 

by M2 and M6 is read as +C. The minimal expression is the product of these sum terms, i.e, f2 

=( + )+( + )+( +C) 

Ex:Reduce the expression f=∑m(0,2,3,4,5,6) using mapping and implement it in AOI logic as 

well as in NAND logic.The Sop k-map and its reduction , and the implementation of the minimal 

expression using AOI logic and the corresponding NAND logic are shown in figures below 

In SOP k-map, the reduction is done as: 
 

1. m5 has only one adjacency m4 , so combine m5 and m4 into a square. Along this 2-square 

A remains constant as 1 and B remains constant as 0 but C varies from 0 to 1. So read it 

as A . 

2. m3 has only one adjacency m2 , so combine m3 and m2 into a square. Along this 2-square 

A remains constant as 0 and B remains constant as 1 but C varies from 1 to 0. So read it 

as B. 

3. m6 can form a 2-square with m2 and m4 can form a 2-square with m0, but observe that by 

wrapping the map from left to right m0, m4 ,m2 ,m6 can form a 4-square. Out of these m2 

andm4 have already been combined but they can be utilized again. So make it. Along this 

4-square, A is changing from 0 to 1 and B is also changing from 0 to 1 but C is remaining 

constant as 0. so read it as . 

4. Write all the product terms in SOP form. So the minimal SOP expression is 

fmin=  

k-map AOI logic NAND logic 
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Four variable k-maps: 
 

Four variable k-map expressions can have 24=16 possible combinations of input variables such  

as             ,             ,------------ABCD with minterm  designations m0,m1 -------------------- m15 respectively 

in SOP form  & A+B+C+D, A+B+C+      ,----------     +      +     + with maxterms M0,M1, --------- 

- 

-M15 respectively in POS form. It has 24=16 squares or cells.The binary number designations of 

rows & columns are in the gray code. Here follows 01 & 10 follows 11 called Adjacency 

ordering. 
 

SOP form POS form 
 

EX:  
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Five variable k-map: 
 

Five variable k-map can have 25 =32 possible combinations of input variable as 

       ,             E,--------ABCDE  with  minterms  m0,  m1-----m31 respectively in  SOP & 

A+B+C+D+E,   A+B+C+           ,----------     +       +     +       + with maxterms M0,M1, ----------- 

M31 respectively in POS form. It has 25=32 squares or cells of the k-map are divided into 2 

blocks of 

16 squares each.The left block represents minterms from m0 to m15 in which A is a 0, and the 

right block represents minterms from m16 to m31 in which A is 1.The 5-variable k-map may 

contain 2-squares, 4-squares , 8-squares , 16-squares or 32-squares involving these two blocks. 

Squares are also considered adjacent in these two blocks, if when superimposing one block on 

top of another, the squares coincide with one another. 
 

Grouping s is 
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Ex: F=∑m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) is SOP 
 

POS is F=πM(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27) 
 

The real minimal expression is the minimal of the SOP and POS forms. 
 

The reduction is done as 
 

1. There is no isolated 1s 

2. M12 can go only with m13. Form a 2-square which is read as A‘BCD‘ 

3. M0 can go with m2,m16 and m18 . so form a 4-square which is read as B‘C‘E‘ 

4. M20,m21,m17 and m16 form a 4-square which is read as AB‘D‘ 

5. M2,m3,m18,m19,m10,m11,m26 and m27 form an 8-square which is read as C‘d 

6. Write all the product terms in SOP form. 

So the minimal expression is 

Fmin= A‘BCD‘+B‘C‘E‘+AB‘D‘+C‘D(16 inputs) 
 

In the POS k-map ,the reduction is done as: 
 

1. There are no isolated 0s 
 

3.  

4.M8 

5. M28 

6.M30 

7. Sum terms in POS form. So the minimal expression in POS is 

Fmin= A‘BcD‘+B‘C‘E‘+AB‘D‘+C‘D 
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Six variable k-map: 
 

Six variable k-map can have 26 =64 combinations as                  ,                ,--------- 

---ABCDEF with minterms m0, m1-----m63 respectively in SOP & (A+B+C+D+E+F), ---------- (  
+    +     +     +     +    ) with maxterms M0,M1, -----------M63    respectively in POS form. It has 

26=64 squares or cells of the k-map are divided into 4 blocks of 16 squares each. 
 

Some possible groupings in a six variable k-map 
 

Don’t care combinations:For certain input combinations, the value of the output is unspecified 

either because the input combinations are invalid or because the precise value of the output is of 

no consequence. The combinations for which the value of experiments are not specified are 

called don‘t care combinations are invalid or because the precise value of the output is of no 

consequence. The combinations for which the value of expressions is not specified are called 

don‘t care combinations or Optional Combinations, such expressions stand incompletely 

specified. The output is a don‘t care for these invalid combinations. 

Ex:In XS-3 code system, the binary states 0000, 0001, 0010,1101,1110,1111 are unspecified. & 

never occur called don‘t cares. 

A standard SOP expression with don‘t cares can be converted into a standard POS 

form by keeping the don‘t cares as they are & writing the missing minterms of the SOP form as 

the maxterms of the POS form viceversa. 

Don‘t cares denoted by ‗X‘ or ‗φ‘ 
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Ex:f=∑m(1,5,6,12,13,14)+d(2,4) 
 

Or f=π M(0,3,7,9,10,11,15).πd(2,4) 
 

SOP minimal form fmin=       +B  +     

POS minimal form fmin=(B+D)( +B)( +D) 
 

= + + + + ( +   
 
 

 

 

Prime implicants, Essential Prime implicants, Redundant prime implicants: 

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each of 

these subcubes is called a Prime implicant (PI). The PI which contains at leastone which cannot 

be covered by any other prime implicants is called as Essential Prime implicant (EPI).The PI 

whose each 1 is covered at least by one EPI is called a Redundant Prime implicant (RPI). A PI 

which is neither an EPI nor a RPI is called a Selective Prime implicant (SPI). 

The function has unique MSP comprising EPI is 

F(A,B,C,D)= CD+ABC+A D + B  

The RPI ‗BD‘ may be included without changing the function but the resulting expression would 

not be in minimal SOP(MSP) form. 

 

Essential and Redundant Prime Implicants 
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F(A,B,C,D)=∑m(0,4,5,10,11,13,15) SPI are marked by dotted squares, shows 

MSP form of a function need not be unique. 

 

 

 

Essential and Selective Prime Implicants 
 

Here, the MSP form is obtained by including two EPI‘s & selecting a set of SPI‘s to cover 

remaining uncovered minterms 5,13,15. & these can be covered as 

(A) (4,5) &(13,15) ---------- B +ABD 

(B) (5,13) & (13,15) -------- B D+ABD 

(C) (5,13) & (15,11) ------- B D+ACD 

F(A,B,C,D)= +A C---------EPI‘s + B +ABD 
 

(OR) F(A,B,C,D)=         +A  C---------EPI‘s + B   D+ABD 
 

(OR) F(A,B,C,D)=         +A  C---------EPI‘s + B   D+ACD 

False PI’s Essential False PI’s, Redundant False PI’s & Selective False PI’s: 
 

The maxterms are called falseminterms. The PI‘s is obtained by using the maxterms are 

called False PI‘s (FPI). The FPI which contains at least one ‗0‘ which can‘t be covered by only 

other FPI is called an Essential False Prime implicant (ESPI) 

F(A,B,C,D)= ∑m(0,1,2,3,4,8,12) 
 

=π M(5,6,7,9,10,11,13,14,15) 
 

Fmin= ( + )( + )( + )( + ) 

All the FPI, EFPI‘s as each of them contain atleast one ‗0‘ which can‘t be covered by any other 

FPI 
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Essential False Prime implicants 

Consider Function F(A,B,C,D)= π M(0,1,2,6,8,10,11,12) 

 

Essential and Redundant False Prime Implicants 
 

Mapping when the function is not expressed in minterms (maxterms): 
 

An expression in k-map must be available as a sum (product) of minterms (maxterms). However 

if not so expressed, it is not necessary to expand the expression algebraically into its minterms 

(maxterms). Instead, expansion into minterms (maxterms) can be accomplished in the process of 

entering the terms of the expression on the k-map. 

Limitations of Karnaugh maps: 
 

• Convenient as long as the number of variables does not exceed six. 

• Manual technique, simplification process is heavily dependent on the human abilities. 

Quine-Mccluskey Method: 
 

It also known as Tabular method. It is more systematic method of minimizing expressions  

of even larger number of variables. It is suitable for hand computation as well as computation by 

machines i.e., programmable. . The procedure is based on repeated application of the combining 

theorem. 

PA+P =P (P is set of literals) on all adjacent pairs of terms, yields the set of all PI‘s from which 

a minimal sum may be selected. 

Consider expression 
 

∑m(0,1,4,5)= + C+A +A C 
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First, second terms & third, fourth terms can be combined 
 

   ( + )+ (C+ )= +A  

Reduced to 
 

 (    +    )=  

The same result can be obtained by combining m0& m4 & m1&m5 in first step & resulting terms 

in the second step . 

Procedure: 
 

• Decimal Representation 

• Don‘t cares 

• PI chart 

• EPI 

• Dominating Rows & Columns 

• Determination of Minimal expressions in comples cases. 

Branching Method: 
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EX: 
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UNIT-III 

COMBINATIONAL CIRCUITS 
 

Combinational Logic 

• Logic circuits for digital systems may be combinational or sequential. 
 

• A combinational circuit consists of input variables, logic gates, and output variables. 
 

 

 
 

 

For n input variables,there are 2n possible combinations of binary input variables .For 

each possible input Combination ,there is one and only one possible output combination.A 

combinational circuit can be described by m Boolean functions one for each output 

variables.Usually the input s comes from flip-flops and outputs goto flip-flops. 

 

 

Design Procedure: 

 
1. The problem is stated 

2. The number of available input variables and required output variables is 
determined. 3.The input and output variables are assigned lettersymbols. 
4.The truth table that defines the required relationship between inputs and outputs is derived. 

5.The simplified Boolean function for each output is obtained. 
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Adders: 

 
Digital computers perform variety of information processing tasks,the one is arithmetic 

operations.And the most basic arithmetic operation is the addition of two binary digits.i.e, 4 basic 

possible operations are: 

0+0=0,0+1=1,1+0=1,1+1=10 
 

The first three operations produce a sum whose length is one digit, but when augends and addend 

bits are equal to 1,the binary sum consists of two digits.The higher significant bit of this result is 

called a carry.A combinational circuit that performs the addition of two bits is called a half- 

adder. One that performs the addition of 3 bits (two significant bits & previous carry) is called a 

full adder.& 2 half adder can employ as a full-adder. 

The Half Adder: A Half Adder is a combinational circuit with two binary inputs (augends and 

addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and 

produces the sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single 

bit words. 

 

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is the 

X-OR of A and B ( It represents the LSB of the sum). Therefore, 
 

S=A𝐵+𝐴 
 

The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1).Therefore, 

C=AB 

A half-adder can be realized by using one X-OR gate and one AND gate a 
 

Logic diagrams of half-adder 
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NAND LOGIC: 

 

NOR Logic: 
 

 

 

 
The Full Adder: 

 
A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum 

bit and a carry bit. To add two binary numbers, each having two or more bits, the LSBs can be 

added by using a half-adder. The carry resulted from the addition of the LSBs is carried over to 

the next significant column and added to the two bits in that column. So, in the second and  

higher columns, the two data bits of that column and the carry bit generated from the addition in 

the previous column need to be added. 

The full-adder adds the bits A and B and the carry from the previous column called the 

carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S 

gives the value of the least significant bit of the sum. The variable Cout gives the output carry.The 
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eight rows under the input variables designate all possible combinations of 1s and 0s that these 

variables may have. The 1s and 0s for the output variables are determined from the arithmetic 

sum of the input bits. When all the bits are 0s , the output is 0. The S output is equal to 1 when 

only 1 input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or 

three inputs are equal to 1. 

 

From the truth table, a circuit that will produce the correct sum and carry bits in response to 

every possible combination of A,B and Cin is described by 

 
S = ABCin + ABCin + ABCin + ABCin 

Cout = ABCin + ABCin + ABCin + ABCin 

 

and 

S = A  B  Cin 

Cout = ACin + BCin + AB 
 
 

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the modulo 

sum of the data bits in that column and the carry from the previous column. The  logic diagram 

of the full-adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR 

gate is 
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Even though a full-adder can be constructed using two half-adders, the disadvantage is that the 

bits must propagate through several gates in accession, which makes the total propagation delay 

greater than that of the full-adder circuit using AOI logic. 

The Full-adder neither can also be realized using universal logic, i.e., either only NAND gates or 

only NOR gates as 

 

NAND Logic: 
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NOR Logic: 
 

 

Subtractors: 

The subtraction of two binary numbers may be accomplished by taking the complement 

of the subtrahend and adding it to the minuend. By this, the subtraction operation becomes an 

addition operation and instead of having a separate circuit for subtraction, the adder itself can be 

used to perform subtraction. This results in reduction of hardware. In subtraction, each 

subtrahend bit of the number is subtracted from its corresponding significant minuend bit to form 

a difference bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the 

next significant position., that has been borrowed must be conveyed to the next higher pair of 

bits by means of a signal coming out (output) of a given stage and going into (input) the next 

higher stage. 

The Half-Subtractor: 

 
A Half-subtractor is a combinational circuit that subtracts one bit from the other and 

produces the difference. It also has an output to specify if a 1 has been borrowed. . It is used to 

subtract the LSB of the subtrahend from the LSB of the minuend when one binary number is 

subtracted from the other. 

A Half-subtractor is a combinational circuit with two inputs A and B and two 

outputs d and b. d indicates the difference and b is the output signal generated that informs the 

next stage that a 1 has been borrowed. When a bit B is subtracted from another bit A, a 

difference bit (d) and a borrow bit (b) result according to the rules given as 
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The output borrow b is a 0 as long as A≥B. It  is a 1 for A=0 and B=1. The d output is the result  

of the arithmetic operation2b+A-B. 

A circuit that produces the correct difference and borrow bits in response to every possible 

combination of the two 1-bit numbers is , therefore , 

d=A𝐵+𝐴 and b=𝐴 B 
 

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is obtained 

by ANDing the complement of the minuend with the subtrahend.Note that logic for this exactly 

the same as the logic for output S in the half-adder. 
 

 

 
A half-substractor can also be realized using universal logic either using only NAND gates or 

using NOR gates as: 

NAND Logic: 
 

 

 
NOR Logic: 
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The Full-Subtractor: 

 
The half-subtractor can be only for LSB subtraction. IF there is a borrow  

during the subtraction of the LSBs, it affects the subtraction in the next higher column; the 

subtrahend bit is subtracted from the minuend bit, considering the borrow from that column used 

for the subtraction in the preceding column. Such a subtraction is performed by a full-subtractor. 

It subtracts one bit (B) from another bit (A) , when already there is a borrow bi from this column 

for the subtraction in the preceding column, and outputs the difference bit (d) and the borrow 

bit(b) required from the next d and b. The two outputs present the difference and output borrow. 

The 1s and 0s for the output variables are determined from the subtraction of A-B-bi. 
 

From the truth table, a circuit that will produce the correct difference and borrow bits in response 

to every possiblecombinations of A,B and bi is 
 

A full-subtractor can be realized using X-OR gates and AOI gates as 
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The full subtractor can also be realized using universal logic either using only NAND gates or 

using NOR gates as: 

NAND Logic: 
 

 

NOR Logic: 
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Binary Parallel Adder: 

 
A binary parallel adder is a digital circuit that adds two binary numbers in parallel form 

and produces the arithmetic sum of those numbers in parallel form. It consists of full adders 

connected in a chain , with the output carry from each full-adder connected to the input carry of 

the next full-adder in the chain. 

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The 

augends bits of A and addend bits of B are designated by subscript numbers from right to left, 

with subscript 1 denoting the lower –order bit. The carries are connected in a chain through the 

full-adders. The input carry to the adder is Cin and the output carry is C4. The S output generates 

the required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has 

four terminals for the augends bits, four terminals for the addend bits, four terminals for the sum 

bits, and two terminals for the input and output carries. AN n-bit parallel adder requires n-full 

adders. It can be constructed from 4-bit, 2-bit and 1-bit full adder ICs by cascading several 

packages. The output carry from one package must be connected to the input carry of the one 

with the next higher –order bits. The 4-bit full adder is a typical example of an MSI function. 

 

 

Ripple carry adder: 

In the parallel adder, the carry –out of each stage is connected to the carry-in of 

the next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after 

the carry-in of that stage occurs. This is due to the propagation delays in the logic circuitry, 



35  

which lead to a time delay in the addition process. The carry propagation delay for each full- 

adder is the time between the application of the carry-in and the occurrence of the carry-out. 

The 4-bit parallel adder, the sum (S1) and carry-out (C1) bits given by FA1 are not valid, until 

after the propagation delay of FA1. Similarly, the sum S2 and carry-out (C2) bits given by FA2 are 

not valid until after the cumulative propagation delay of two full adders (FA1 and FA2) , and so 

on. At each stage ,the sum bit is not valid until after the carry bits in all the preceding stages are 

valid. Carry bits must propagate or ripple through all stages before the most significant sum bit is 

valid. Thus, the total sum (the parallel output) is not valid until after the cumulative delay of all 

the adders. 

The parallel adder in which the carry-out of each full-adder is the carry-in to the next most 

significant adder is called a ripple carry adder.. The greater the number of bits that a ripple carry 

adder must add, the greater the time required for it to perform a valid addition. If two numbers 

are added such that no carries occur between stages, then the add time is simply the propagation 

time through a single full-adder. 

4- Bit Parallel Subtractor: 

The subtraction of binary numbers can be carried out most conveniently by means of 

complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding 

it to A . The 2‘s complement can be obtained by taking the 1‘s complement and adding 1 to the 

least significant pair of bits. The 1‘s complement can be implemented with inverters as 
 

 

 

Binary-Adder Subtractor: 

 
A 4-bit adder-subtractor, the addition and subtraction operations are combined into 

one circuit with one common binary adder. This is done by including an X-OR gate with each 

full-adder. The mode input M controls the operation. When M=0, the circuit is an adder, and 

when M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the 

inputs of B. When M=0, .The full-adder receives the value of B , the input carry is 0 
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and the circuit performs   A+B. when    and C1=1. The B inputs are complemented  and 
a 1 is through the input carry. The circuit performs the operation A plus the 2‘s complement of B. 

 

The Look-Ahead –Carry Adder: 

 
In parallel-adder,the speed with which an addition can be performed is governed by 

the time required for the carries to propagate or ripple through all of the stages of the adder. The 

look-ahead carry adder speeds up the process by eliminating this ripple carry delay. It examines 

all the input bits simultaneously and also generates the carry-in bits for all the stages 

simultaneously. 

The method of speeding up the addition process is based on the two additional 

functions of the full-adder, called the carry generate and carry propagate functions. 

Consider one full adder stage; say the nth stage of a parallel adder as shown in fig.  

we know that is made by two half adders and that the half adder contains an X-OR gate to 

produce the sum and an AND gate to produce the carry. If both the bits An and Bn are 1s, a carry 

has to be generated in this stage regardless of whether the input carry Cin is a 0 or a 1. This is 

called generated carry, expressed as Gn= An.Bn which has to appear at the output through the OR 

gate as shown in fig. 
 

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder 

at the  input   produces an intermediary sum bit- call it Pn   –which is  expressed  as . 

Next Pn and Cn are added using the X-OR gate inside the second half adder to produce the final 
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sum bit  and and  output carryC0= Pn.Cn=(      )Cn which 
becomes carry for the (n+1) thstage. 

 

Consider the case of both Pn and Cn being 1. The input carry Cn has to be propagated 
to the output only if Pn is 1. If Pn is 0, even if Cn is 1, the and gate in the second half-adder will 
inhibit Cn . the carry out of the nth stage is 1 when either Gn=1 or Pn.Cn =1 or both Gn and Pn.Cn 

are equal to 1. 

For the final sum and carry outputs of the nth stage, we get the following Boolean 

expressions. 

 

Observe the recursive nature of the expression for the output carry 

at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to express the 

output carry of a higher significant stage is the carry-out of the previous stage. 

Based on these , the expression for the carry-outs of various full adders are as follows, 
 

Observe that the final output carry is expressed as a  function of 

the input variables in SOP form. Which is two level AND-OR or equivalent NAND-NAND  

form. Observe that the full look-ahead scheme requires the use of OR gate with (n+1) inputs and 

AND gates with number of inputs varying from 2 to (n+1). 
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2’s complement Addition and Subtraction using Parallel Adders: 

 
Most modern computers use the 2‘s complement system to represent negative numbers 

and to perform subtraction operations of signed numbers can be performed using only the 

addition operation ,if we use the 2‘s complement form to represent negative numbers. 

The circuit shown can perform both addition and subtraction in the 2‘s complement. This 

adder/subtractor circuit is controlled by the control signal ADD/SUB‘. When the ADD/SUB‘ 

level is HIGH, the circuit performs the addition of the numbers stored in registers A and B. 

When the ADD/Sub‘ level is LOW, the circuit subtract the number in register B from the number 

in register A. The operation is: 

When ADD/SUB‘ is a 1: 

 
1. AND gates 1,3,5 and 7 are enabled , allowing B0,B1,B2and B3 to pass to the OR gates 

9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking B0‘,B1‘,B2‘, and B3‘ from 
reaching the OR gates 9,10,11 and 12. 

 

2. The two levels B0 to B3 pass through the OR gates to the 4-bit parallel adder, to be added 
to the bits A0 to A3. The sum appears at the output S0 to S3 

3. Add/SUB‘ =1 causes no carry into the adder. 

When ADD/SUB‘ is a 0: 

1. AND gates 1,3,5 and 7 are disabled , allowing B0,B1,B2and B3 from reaching the OR gates 
9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking B0‘,B1‘,B2‘, and B3‘ from 
reaching the OR gates. 
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2. The two levels B0‘ to B3‘ pass through the OR gates to the 4-bit parallel adder, to be 
added to the bits A0 to A3.The C0 is now 1.thus the number in register B is converted to  
its 2‘s complement form. 

 

3. The difference appears at the output S0 toS3. 

Adders/Subtractors used for adding and subtracting signed binary numbers. In computers , the 

output is transferred into the register A (accumulator) so that the result of the addition or 

subtraction always end up stored in the register A This is accomplished by applying a transfer 

pulse to the CLK inputs of register A. 

 

Serial Adder: 

A serial adder is used to add binary numbers in serial form. The two binary numbers to be 

added serially are stored in two shift registers A and B. Bits are added one pair at a time through  

a single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to a D flip- 

flop. The output of this flip-flop is then used as the carry input for the  next  pair of significant 

bits. The sum bit from the S output of the full-adder could be transferred to a third shift register. 

By shifting the sum into A while the bits of A are shifted out, it is possible to use one register for 

storing both augend and the sum bits. The serial input register B can be used to transfer a new 

binary number while the addend bits are shifted out during the addition. 

The operation of the serial adder is: 
 

Initially register A holds the augend, register B holds the addend and the carry flip-flop is 

cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at x 

and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both 

registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A , and 

the output carry is transferred into flip-flop Q . The shift control enables the registers for a 

number of clock pulses equal to the number of bits of the registers. For each succeeding clock 

pulse a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are 

shifted once to the right. This process continues until the shift control is disabled. Thus the 

addition is accomplished by passing each pair of bits together with the previous carry through a 

single full adder circuit and transferring the sum, one bit at a time, into register A. 



40  

Initially, register A and the carry flip-flop are cleared to 0 and then the first number is 

added from B. While B is shifted through the full adder, a second number is transferred to it 

through its serial input. The second number is then added to the content of register A while a 

third number is transferred serially into register B. This can be repeated to form the addition of 

two, three, or more numbers and accumulate their sum in register A. 

 

Difference between Serial and Parallel Adders: 

The parallel adder registers with parallel load, whereas the serial adder uses shift 

registers. The number of full adder circuits in the parallel adder is equal to the number of bits in 

the binary numbers, whereas the serial adder requires only one full adder circuit and a carry flip- 

flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the serial 

adder is a sequential circuit. The sequential circuit in the serial adder consists of a full-adder and 

a flip-flop that stores the output carry. 

BCD Adder: 

The BCD addition process: 
 

1. Add the 4-bit BCD code groups for each decimal digit position using ordinary binary 

addition. 
 

2. For those positions where the sum is 9 or less, the sum is in proper BCD form and no 

correction is needed. 
 

3. When the sum of two digits is greater than 9, a correction of 0110 should be added 

to that sum, to produce the proper BCD result. This will produce a carry to be added 

to the next decimalposition. 

A BCD adder circuit must be able to operate in accordance with the above steps. In other words, 

the circuit must be able to do the following: 

1. Add two 4-bit BCD code groups, usingstraight binaryaddition. 
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2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if it is , add 

0110 (decimal 6) to this sum and generate a carry to the next decimalposition. 

The first requirement is easily met by using a 4- bit binary parallel adder such as the 74LS83 

IC .For example , if the two BCD code groups A3A2A1A0and B3B2B1B0 are applied to a 4-bit 

parallel adder, the adder will output S4S3S2S1S0 , where S4 is actually C4 , the carry –out of the 

MSB bits. 
 

The sum outputs S4S3S2S1S0 can range anywhere from 00000 to 100109when both the 

BCD code groups are 1001=9). The circuitry for a BCD adder must include the logic needed to 

detect whenever the sum is greater than 01001, so that the correction can be added in. Those 

cases , where the sum is greater than 1001 are listed as: 
 
 

Let us define a logic output X that will go HIGH only when the sum is greater than 01001 

(i.e, for the cases in table). If examine these cases ,see that X will be HIGH for either of the 

following conditions: 

1. Whenever S4 =1(sum greater than15) 

2. Whenever S3 =1 and either S2 or S1 or both are 1 (sum 10 to 15) 

This condition can be expressedas 

X=S4+S3(S2+S1) 

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to 

generate a carry. The circuit consists of three basic parts. The two BCD code groups A3A2A1A0 

and B3B2B1B0 are added together in the upper 4-bit adder, to produce the sum S4S3S2S1S0. The 

logic gates shown implement the expression for X. The lower 4-bit adder will add the correction 

0110 to the sum bits, only when X=1, producing the final BCD sum output represented by 

∑3∑2∑1∑0. The X is also the carry-out that is produced when the sum is greater than 01001. 

When X=0, there is no carry and no addition of 0110. In such cases, ∑3∑2∑1∑0= S3S2S1S0. 
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Two or more BCD adders can be connected in cascade when two or more digit decimal 

numbers are to be added. The carry-out of the first BCD adder is connected as the carry-in of the 

second BCD adder, the carry-out of the second BCD adder is connected as the carry-in of the 

third BCD adder and so on. 
 

EXCESS-3(XS-3) ADDER: 

 
To perform Excess-3 additions, 

1. Add two xs-3 codegroups 
2. If carry=1, add 0011(3) to the sum of those two codegroups 

If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two code 

groups. 

Ex: Add 9 and 5 

1100 9 in Xs-3 
 +1000 

___ _ _ __ 

5 in xs-3 

1 0100 there is a carry 

+0011 
---------- 

0011 
---------- 

add 3 to each group 

0100 0111 14 in xs-3 

(1) (4)  

EX: 
  

 

 

 
Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (A3 

A2A1A0) and addend (B3B2B1B0) in xs-3 are added using the 4-bit parallel adder. If the carry is a 
1, then 0011(3) is added to the sum bits S3S2S1S0 of the upper adder in the lower 4-bit parallel 
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adder. If the carry is a 0, then 1101(3) is added to the sum bits (This is equivalent to subtracting 
0011(3) from the sum bits. The correct sum in xs-3 is obtained 

 

Excess-3 (XS-3) Subtractor: 

To perform Excess-3 subtraction, 

1. Complement thesubtrahend 
2. Add the complemented subtrahend to theminuend. 
3. If carry =1, result is positive. Add 3 and end around carry to the result . Ifcarry=0, 

the result is negative. Subtract 3, i.e, and take the 1‘s complement of the result. 
 

Ex: Perform 9-4 

1100 9 in xs-3 

+1000 Complement of 4 n Xs-3 

-------- 

(1) 0100 There is a carry 
+0011 Add 0011(3) 

------------ 

0111 

1 End around carry 

------------ 

1000 5 in xs-3 
 

The minuend and the 1‘s complement of the subtrahend in xs-3 are added in the upper 4- 

bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum bits 

of the upper adder in the lower adder and the sum bits of the lower adder are complemented to 

get the result. If the carry-out from the upper adder is a 1, then 3=0011 is added to the sum bits  

of the lower adder and the sum bits of the lower adder give the result. 

 

Binary Multipliers: 

In binary multiplication by the paper and pencil method, is modified somewhat in digital 
machines because a binary adder can add only two binary numbers at a time. 

In a binary multiplier, instead of adding all the partial products at the end, they are added two at  

a time and their sum accumulated in a register (the accumulator register). In addition, when the 

multiplier bit is a 0,0s are not written down and added because it does not affect the final result. 

Instead, the multiplicand is shifted left by one bit. 

 
The multiplication of 1110 by 1001 using this processis 

Multiplicand 1110 

Multiplier 1001 

1110 The LSB of the multiplier is a 1; write down the 

multiplicand; shift the multiplicand one position to the left 

(1 1 1 0 0 ) 

1110 The second multiplier bit is a 0; write down the previous 

result  1110; shift the multiplicand to the left again (1 1 1 0 
0 0) 
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+1110000 The fourth multiplier bit is a 1 write down the new 
multiplicand add it to the first partial product to obtain the 
final product. 

1111110 

This multiplication process can be performed by the serial multiplier circuit , which 

multiplies two 4-bit numbers to produce an 8-bit product. The circuit consists of following 

elements 

X register: A 4-bit shift register that stores the multiplier --- it will shift right on the falling edge 

of the clock. Note that 0s are shifted in from the left. 

B register: An 8-bit register that stores the multiplicand; it will shift left on the falling  edge of 

the clock. Note that 0s are shifted in from the right. 
A register: An 8-bit register, i.e, the accumulator that accumulates the partial products. 
Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder outputs S7 

through S0 are connected to the D inputs of the accumulator so that the sum can be transferred to 
the accumulator only when a clock pulse gets through the AND gate. 
The circuit operation can be described by going through each step in the multiplication of 1110 

by 1001. The complete process requires 4 clock cycles. 

1. Before the first clock pulse: Prior to the occurrence of the first clock pulse, the register A is 
loaded with 00000000, the register B with the multiplicand 00001110, and the register X with 
the multiplier 1001. Assume that each of these registers is loaded using its asynchronous 
inputs(i.e., PRESET and CLEAR). The output of the adder will be the sum of A and B,i.e., 
00001110. 

2. First Clock pulse:Since the LSB of the multiplier (X0) is a 1, the first clock pulse gets through 
the AND gate and its positive going transition transfers the sum outputs into the accumulator. 
The subsequent negative going transition causes the X and B registers to shift right and left, 
respectively. This produces a new sum of A andB. 

3. Second Clock Pulse: The second bit of the original multiplier is now in X0 . Since this bit is a 0, 
the second clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are 
not transferred into the accumulator and the number in the accumulator does not change. The 
negative going transition of the clock pulse will again shift the X and B registers. Again a new 
sum is produced. 

4. Third Clock Pulse:The third bit of the original multiplier is now in X0;since this bit is a 0, the 
third clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are not 
transferred into the accumulator and the number in the accumulator does not change. The 
negative going transition of the clock pulse will again shift the X and B registers. Again a new 
sum is produced. 

5. Fourth Clock Pulse: The last bit of the original multiplier is now in X0 , and since it is a 1, the 
positive going transition of the fourth pulse transfers the sum into the accumulator. The 
accumulator now holds the final product. The negative going transition of the clock pulse shifts 
X and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out. 

 

Code converters: 

 
The availability of a large variety of codes for the same discrete elements of 

information results in the use of different codes by different digital systems. It is sometimes 

necessary to use the output of one system as the input to another. A conversion circuit must be 
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inserted between the two systems if each uses different codes for the same information. Thus a 

code converter is a logic circuit whose inputs are bit patterns representing  numbers  (or 

character) in one cod and whose outputs are the corresponding representation  in a different  
code. Code converters are usually multiple output circuits. 

To convert from binary code A to binary code B, the input lines must supply the bit 

combination of elements as specified by code A and the output lines must generate the 

corresponding bit combination of code B. A combinational circuit performs this transformation  

by means of logic gates. 

For example, a binary –to-gray code converter has four binary input lines B4, B3,B2,B1 and four 
gray code output lines G4,G3,G2,G1. When the input is 0010, for instance, the output should be 
0011 and so forth. To design a code converter, we use a code table treating it as a truth table to 
express each output as a Boolean algebraic function of all the inputs. 

In this example, of binary –to-gray code conversion, we can treat the binary to the 
gray code table as four truth tables to derive expressions for G4, G3, G2, and G1. Each of these 
four expressions would, in general, contain all the four input variables B4, B3,B2,and B1. 

Thus,this code converter is actually equivalent to four logic circuits, one for each of the truth 
tables. 

The logic expression derived for the code converter can be simplified using the usual 

techniques, including ‗don‘t cares‘ if present. Even if the input is an unweighted code, the same 

cell numbering method which we used earlier can be used, but the cell numbers --must 

correspond to the input combinations as if they were an 8-4-2-1 weighted code. s 

Design of a 4-bit binary to gray code converter: 
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Design of a 4-bit gray to Binary code converter: 
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Design of a 4-bit BCD to XS-3 code converter: 
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Design of a BCD to gray code converter: 
 

 

 

 

 
Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code 

Input: 
 
 

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211 BCD code 

input: 
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Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number: 
 

 

 
 
 

Comparators: 
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1. Magnitude Comparator: 
 
 

1- bit Magnitude Comparator: 
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4- Bit MagnitudeComparator: 
 

 

 

 

 
 
 



 
 

 

IC Comparator: 
 

 

ENCODERS: 

 

Octal to Binary 

Encoder: 
 
 



 
  

Decimal to BCD Encoder: 
 
 

Tristate bus system: 
 
 

In digital electronicsthree-state, tri-state, or 3-statelogic allows an output port to assume a high 
impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the 
circuit. 

 
This allows multiple circuits to share the same output line or lines (such as a bus which cannot 

listen to more than one device at a time). 

 

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400 and 

4000 series as well as in other types, but also internally in many integrated circuits. Other typical 

uses are internal and external buses in microprocessors, computer memory, and peripherals. Many 

devices are controlled by an active-low input called OE (Output Enable)  which dictates whether  

the outputs should be held in a high-impedance state or drive their respective loads (to either 0- or 1-

level). 
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