
DIGITAL LOGIC DESIGN Page no. 1

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

UNIT - 1

NUMBER SYSTEMS & BOOLEAN ALGEBRA

• Introduction about digital system

• Philosophy of number systems

• Complement representation of negative numbers

• Binary arithmetic

• Binary codes

• Error detecting & error correcting codes

• Hamming codes

INTRODUCTION ABOUT DIGITAL SYSTEM

A Digital system is an interconnection of digital modules and it is a system that manipulates

discrete elements of information that is represented internally in the binary form.

Now a day’s digital systems are used in wide variety of industrial and consumer products such as

automated industrial machinery, pocket calculators, microprocessors, digital computers, digital watches,

TV games and signal processing and so on.

Characteristics of Digital systems

• Digital systems manipulate discrete elements of information.

• Discrete elements are nothing but the digits such as 10 decimal digits or 26 letters of alphabets and

so on.

• Digital systems use physical quantities called signals to represent discrete elements.

• In digital systems, the signals have two discrete values and are therefore said to be binary.

• A signal in digital system represents one binary digit called a bit. The bit has a value either 0 or 1.

Analog systems vs Digital systems

Analog system process information that varies continuously i.e; they process time varying signals

that can take on any values across a continuous range of voltage, current or any physical parameter.

Digital systems use digital circuits that can process digital signals which can take either 0 or 1 for

binary system.

DIGITAL LOGIC DESIGN Page no. 2

Advantages of Digital system over Analog system

 1. Ease of programmability

The digital systems can be used for different applications by simply changing the program without

additional changes in hardware.

 2. Reduction in cost of hardware

The cost of hardware gets reduced by use of digital components and this has been possible due to

advances in IC technology. With ICs the number of components that can be placed in a given area of

Silicon are increased which helps in cost reduction.

 3.High speed

Digital processing of data ensures high speed of operation which is possible due to advances in

Digital Signal Processing.

 4. High Reliability

Digital systems are highly reliable one of the reasons for that is use of error correction codes.

 5. Design is easy

The design of digital systems which require use of Boolean algebra and other digital techniques is

easier compared to analog designing.

 6. Result can be reproduced easily

Since the output of digital systems unlike analog systems is independent of temperature, noise,

humidity and other characteristics of components the reproducibility of results is higher in digital systems

than in analog systems.

Disadvantages of Digital Systems

• Use more energy than analog circuits to accomplish the same tasks, thus producing more heat as

well.

• Digital circuits are often fragile, in that if a single piece of digital data is lost or misinterpreted the

meaning of large blocks of related data can completely change.

• Digital computer manipulates discrete elements of information by means of a binary code.

• Quantization error during analog signal sampling.

DIGITAL LOGIC DESIGN Page no. 3

NUMBER SYSTEM

Number system is a basis for counting varies items. Modern computers communicate and operate

with binary numbers which use only the digits 0 &1. Basic number system used by humans is Decimal

number system.

For Ex: Let us consider decimal number 18. This number is represented in binary as 10010.

We observe that binary number system take more digits to represent the decimal number. For large

numbers we have to deal with very large binary strings. So this fact gave rise to three new number systems.

i) Octal number systems

ii) Hexa Decimal number system

iii) Binary Coded Decimal number(BCD) system

To define any number system we have to specify

• Base of the number system such as 2,8,10 or 16.

• The base decides the total number of digits available in that number system.

• First digit in the number system is always zero and last digit in the number system is always

base-1.

Binary number system:

The binary number has a radix of 2. As r = 2, only two digits are needed, and these are 0 and 1. In

binary system weight is expressed as power of 2.

The left most bit, which has the greatest weight is called the Most Significant Bit (MSB). And the

right most bit which has the least weight is called Least Significant Bit (LSB).

DIGITAL LOGIC DESIGN Page no. 4

For Ex: 1001.012 = [(1) × 23] + [(0) × 22] + [(0) × 21] + [(1) × 20] + [(0) × 2-1] + [

(1) × 22]

1001.012 = [1 × 8] + [0 × 4] + [0 × 2] + [1 × 1] + [0 × 0.5] + [1 × 0.25]

1001.012 = 9.2510

Decimal Number system

The decimal system has ten symbols: 0,1,2,3,4,5,6,7,8,9. In other words, it has a base of 10.

Octal Number System

Digital systems operate only on binary numbers. Since binary numbers are often very long, two

shorthand notations, octal and hexadecimal, are used for representing large binary numbers. Octal systems

use a base or radix of 8. It uses first eight digits of decimal number system. Thus it has digits from 0 to 7.

Hexa Decimal Number System

The hexadecimal numbering system has a base of 16. There are 16 symbols. The decimal digits 0 to

9 are used as the first ten digits as in the decimal system, followed by the letters A, B, C, D, E and F, which

represent the values 10, 11,12,13,14 and 15 respectively.

Decima

l

Binar

y

Octal Hexadeci

mal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

DIGITAL LOGIC DESIGN Page no. 5

Number Base conversions

The human beings use decimal number system while computer uses binary number system.

Therefore it is necessary to convert decimal number system into its equivalent binary.

i) Binary to octal number conversion

ii) Binary to hexa decimal number conversion

iii) Octal to binary Conversion

iv) Hexa to binary conversion

v) Octal to Decimal conversion

Ex: convert 4057.068 to octal

=4x83+0x82+5x81+7x80+0x8-1+6x8-2

=2048+0+40+7+0+0.0937

DIGITAL LOGIC DESIGN Page no. 6

=2095.093710

vi) Decimal to Octal Conversion

Ex: convert 378.9310 to octal

37810 to octal: Successive division:

8 | 378

|

8 |47 --- 2

|

8 |5 --- 7 ↑

|

0 --- 5

=5728

0.9310 to octal :

0.93x8=7.44

0.44x8=3.52 ↓

0.53x8=4.16

0.16x8=1.28

=0.73418

378.9310=572.73418

vii) Hexadecimal to Decimal Conversion

Ex: 5C716 to decimal

=(5x162)+(C x161)+ (7 x160)

=1280+192+7

=14710

viii) Decimal to Hexadecimal Conversion

Ex: 2598.67510

1 6 2598

16 162 -6

10

= A26 (16)

-2

DIGITAL LOGIC DESIGN Page no. 7

0.67510= 0.675x16 -- 10.8

=

=

0.800x16 -- 12.8 ↓

0.800x16 -- 12.8

= 0.800x16 -- 12.8

=0.ACCC16

2598.67510 = A26.ACCC16

ix) Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary & then the binary no. to

hexadecimal.

Ex: 756.6038

7 5 6 . 6 0 3

111 101 110 . 110 000 011

0001 1110 1110 . 1100 0001 1000

1 E E . C 1 8

x) Hexadecimal to octal conversion:

First convert the given hexadecimal no. to binary & then the binary no. to octal.

Ex: B9F.AE16

=5637.534

Complements:

In digital computers to simplify the subtraction operation & for logical manipulation complements

are used. There are two types of complements used in each radix system.

i) The radix complement or r’s complement

ii) The diminished radix complement or (r-1)’s complement

B 9 F . A E

1011 1001 1111 . 1010 1110

101 110 011 111 . 101 011 100

5 6 3 7 . 5 3 4

DIGITAL LOGIC DESIGN Page no. 8

Representation of signed no.s binary arithmetic in computers:

• Two ways of rep signed no.s

1. Sign Magnitude form

2. Complemented form

• Two complimented forms

1. 1‘s compliment form

2. 2‘s compliment form

Advantage of performing subtraction by the compliment method is reduction in the hardware.(

instead of addition & subtraction only adding ckt‘s are needed.)

i. e, subtraction is also performed by adders only.

Instead of subtracting one no. from other the compliment of the subtrahend is added to

minuend. In sign magnitude form, an additional bit called the sign bit is placed in front of the no.

If the sign bit is 0, the no. is +ve, If it is a 1, the no is _ve.

Ex:

0 1 0 1 0 0 1

↓

Sign bit =+41 magnitude

↑

1 1 0 1 0 0 1

= -41

Note: manipulation is necessary to add a +ve no to a –ve no

Representation of signed no.s using 2’s or 1’s complement method:

If the no. is +ve, the magnitude is rep in its true binary form & a sign bit 0 is placed in

front of the MSB.I f the no is _ve , the magnitude is rep in its 2‘s or 1‘s compliment form &a

sign bit 1 is placed in front of the MSB.

Ex:

Given no. Sign mag form 2‘s comp form 1‘s comp form

01101 +13 +13 +13

010111 +23 +23 +23

10111 -7 -7 -8

1101010 -42 -22 -21

DIGITAL LOGIC DESIGN Page no. 9

Special case in 2’s comp representation:

Whenever a signed no. has a 1 in the sign bit & all 0‘s for the magnitude bits, the decimal

equivalent is -2n , where n is the no of bits in the magnitude .

Ex: 1000= -8 & 10000=-16

Characteristics of 2’s compliment no.s:

Properties:

1. There is one unique zero

2. 2‘s comp of 0 is 0

3. The leftmost bit can‘t be used to express a quantity . it is a 0 no. is +ve.

4. For an n-bit word which includes the sign bit there are (2n-1-1) +ve integers,

2n-1 –ve integers & one 0 , for a total of 2n uniquestates.

5. Significant information is containd in the 1‘s of the +ve no.s & 0‘s of the _ve

no.s

6. A _ve no. may be converted into a +ve no. by finding its 2‘s comp.

Signed binary numbers:

Decimal Sign 2‘s comp form Sign 1‘s comp form Sign mag form

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+1 0011 0011 0011

+0 0000 0000 0000

-0 -- 1111 1000

-1 1111 1110 1001

-2 1110 1101 1010

-3 1101 1100 1011

-4 1100 1011 1100

-5 1011 1010 1101

-6 1010 1001 1110

-7 1001 1000 1111

8 1000 -- --

DIGITAL LOGIC DESIGN Page no. 10

Methods of obtaining 2’s comp of a no:

• In 3 ways

1. By obtaining the 1‘s comp of the given no. (by changing all 0‘s to 1‘s & 1‘s to 0‘s) &

then adding 1.

2. By subtracting the given n bit no N from 2n

3. Starting at the LSB , copying down each bit upto & including the first 1 bit

encountered , and complimenting the remaining bits.

Ex: Express -45 in 8 bit 2‘s comp form

+45 in 8 bit form is 00101101

I method:

1‘s comp of 00101101 & the add 1

00101101

11010010

+1

 _ _ _ _ _ _ _ _ _ _

11010011 is 2‘s comp form

II method:

Subtract the given no. N from 2n

2n = 100000000

Subtract 45= -00101101

+1

 _ _ _

11010011 is 2‘s comp

III method:

Original no: 00101101

Copy up to First 1 bit 1

Compliment remaining : 1101001

bits 11010011

Ex:

DIGITAL LOGIC DESIGN Page no. 11

-73.75 in 12 bit 2‘compform

I method

01001001.1100

10110110.0011

+1

10110110.0100 is 2‘s

II method:

28 = 100000000.0000

Sub 73.75=-01001001.1100

10110110.0100 is 2‘s comp

III method :

Orginalno : 01001001.1100

Copy up to 1‘st bit 100

Comp the remaining bits: 10110110.0

10110110.0100

2’s compliment Arithmetic:

• The 2‘s comp system is used to rep –ve no.s using modulus arithmetic . The word length

of a computer is fixed. i.e, if a 4 bit no. is added to another 4 bit no . the result will be

only of 4 bits. Carry if any , from the fourth bit will overflow called the Modulus

arithmetic.

Ex:1100+1111=1011

• In the 2‘s compl subtraction, add the 2‘s comp of the subtrahend to the minuend . If there

is a carry out , ignore it , look at the sign bit I,e, MSB of the sum term .If the MSB is a

0, the result is positive.& it is in true binary form. If the MSB is a ` (carry in or no carry

at all) the result is negative.& is in its 2‘s comp form. Take its 2‘s comp to find its

magnitude in binary.

Ex:Subtract 14 from 46 using 8 bit 2‘s comp arithmetic:

+14

-14

= 00001110

= 11110010

2‘s comp

+46 = 00101110

-14 =+11110010 2‘s comp form of -14

DIGITAL LOGIC DESIGN Page no. 12

-32 (1)00100000 ignore carry

Ignore carry , The MSB is 0 . so the result is +ve. & is in normal binary

form. So the result is +00100000=+32.

EX: Add -75 to +26 using 8 bit 2‘s comp arithmetic

+75

-75

 = 01001011

=10110101

2‘s comp

+26

-75

 = 00011010

=+10110101

2‘s comp form of -75

-49 11001111 No carry

No carry , MSB is a 1, result is _ve & is in 2‘s comp. The magnitude is 2‘s comp of

11001111. i.e, 00110001 = 49. so result is -49

Ex: add -45.75 to +87.5 using 12 bit arithmetic

+87.5 = 01010111.1000

-45.75=+11010010.0100

-41.75 (1)00101001.1100 ignore carry

MSB is 0, result is +ve. =+41.75

1’s compliment of n number:

• It is obtained by simply complimenting each bit of the no,.& also , 1‘s comp of a

no, is subtracting each bit of the no. form 1.This complemented value rep the –

ve of the original no. One of the difficulties of using 1‘s comp is its rep o f

zero. Both 00000000 & its 1‘s comp 11111111 rep zero.

• The 00000000 called +ve zero& 11111111 called –ve zero.

Ex: -99 & -77.25 in 8 bit 1‘s comp

+99 = 01100011

-99 = 10011100

+77.25 = 01001101.0100

-77.25 = 10110010.1011

1’s compliment arithmetic:

In 1‘s comp subtraction, add the 1‘s comp of the subtrahend to the minuend. If there is a

carryout , bring the carry around & add it to the LSB called the end around carry. Look at the

sign bit (MSB) . If this is a 0, the result is +ve & is in true binary. If the MSB is a 1 (carry or no

carry), the result is –ve & is in its is comp form .Take its 1‘s comp to get the magnitude inn

binary.

DIGITAL LOGIC DESIGN Page no. 13

Ex: Subtract 14 from 25 using 8 bit 1‘s EX: ADD -25 to +14

25 = 00011001 +14 = 00001110

-45 = 11110001 -25 =+11100110

+11 (1)00001010

+1

-11 11110100

 No carry MSB =1

 00001011 result=-ve=-1110

MSB is a 0 so result is +ve (binary)

=+1110

Binary codes

Binary codes are codes which are represented in binary system with modification from the

original ones.

 Weighted Binary codes

 Non Weighted Codes

Weighted binary codes are those which obey the positional weighting principles, each

position of the number represents a specific weight. The binary counting sequence is

an example.

Reflective Code

A code is said to be reflective when code for 9 is complement for the code for 0, and

DIGITAL LOGIC DESIGN Page no. 14

so is for 8 and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are

reflective, whereas the 8421 code is not.

Sequential Codes

A code is said to be sequential when two subsequent codes, seen as numbers in binary

representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and

Excess-3 codes are sequential, whereas the 2421 and 5211 codes are not.

Non weighted codes

Non weighted codes are codes that are not positionally weighted. That is, each

position within the binary number is not assigned a fixed value. Ex: Excess-3 code

Excess-3 Code

Excess-3 is a non weighted code used to express decimal numbers. The code derives

its name from the fact that each binary code is the corresponding 8421 code plus

0011(3).

Gray Code

The gray code belongs to a class of codes called minimum change codes, in

which only one bit in the code changes when moving from one code to the next. The

Gray code is non-weighted code, as the position of bit does not contain any weight.

The gray code is a reflective digital code which has the special property that any two

subsequent numbers codes differ by only one bit. This is also called a unit- distance

code. In digital Gray code has got a special place.

DIGITAL LOGIC DESIGN Page no. 15

Binary to Gray Conversion

Gray Code MSB is binary code MSB.

 Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.

MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.

MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

8421 BCD code (Natural BCD code):

Each decimal digit 0 through 9 is coded by a 4 bit binary no. called natural binary codes.

Because of the 8,4,2,1 weights attached to it. It is a weighted code & also sequential . it is useful

for mathematical operations. The advantage of this code is its case of conversion to & from

decimal. It is less efficient than the pure binary, it require more bits.

Ex: 14→1110 in binary

But as 0001 0100 in 8421 ode.

The disadvantage of the BCD code is that , arithmetic operations are more complex than

they are in pure binary . There are 6 illegal combinations 1010,1011,1100,1101,1110,1111 in

these codes, they are not part of the 8421 BCD code system . The disadvantage of 8421 code is,

the rules of binary addition 8421 no, but only to the individual 4 bit groups.

BCD Addition:

It is individually adding the corresponding digits of the decimal no,s expressed in

4 bit binary groups starting from the LSD . If there is no carry & the sum term is not an illegal

code , no correction is needed .If there is a carry out of one group to the next group or if the sum

term is an illegal code then 610(0100) is added to the sum term of that group & the resulting carry

is added to the next group.

Ex: Perform decimal additions in 8421 code

(a)25+13

In BCD 25= 0010 0101

In BCD +13 =+0001 0011

38 0011 1000

No carry , no illegal code .This is the corrected sum

DIGITAL LOGIC DESIGN Page no. 16

(b). 679.6 + 536.8

679.6 = 0110 0111 1001 .0110 in BCD

+536.8 = +0101 0011 0010 .1000 in BCD

 _

1216.4 1011 1010 0110 . 1110 illegal codes

 +0110 + 0011 +0110 . + 0110 add 0110 to each

(1)0001 (1)0000 (1)0101 . (1)0100 propagate carry

/ / / /

 +1 +1 +1 +1

0001 0010 0001 0110 . 0100

1 2 1 6 . 4

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from

the corresponding 4- bit group of the minuend in binary starting from the LSD . if there is no

borrow from the next group , then 610(0110)is subtracted from the difference term of this group.

(a)38-15

In BCD 38= 0011 1000

In BCD -15 = -0001 0101

23 0010 0011

No borrow, so correct difference.

.(b) 206.7-147.8

206.7 = 0010 0000 0110 . 0111 in BCD

-147.8 = -0001 0100 0111 . 0110 in BCD

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

58.9 0000 1011 1110 . 1111 borrows are present

-0110 -0110 . -0110 subtract 0110

0101 1000 . 1001

DIGITAL LOGIC DESIGN Page no. 17

BCD Subtraction using 9’s & 10’s compliment methods:

Form the 9‘s & 10‘s compliment of the decimal subtrahend & encode that no. in

the 8421 code . the resulting BCD no.s are then added.

EX: 305.5 – 168.8

305.5 = 305.5

-168.8= +83.1 9‘s comp of -168.8

 _ _

(1)136.6

+1 end around carry

8.8 in BCD

(1)0001 0011 0110 . 0110

+1 End around carry

0001 0011 0110 . 0111

= 136.7

Excess three(xs-3)code:

It is a non-weighted BCD code .Each binary codeword is the corresponding 8421

codeword plus 0011(3).It is a sequential code & therefore , can be used for arithmetic

operations..It is a self-complementing code.s o the subtraction by the method of compliment

addition is more direct in xs-3 code than that in 8421 code. The xs-3 code has six invalid states

0000,0010,1101,1110,1111.. It has interesting properties when used in addition & subtraction.

Excess-3 Addition:

Add the xs-3 no.s by adding the 4 bit groups in each column starting from the LSD. If

there is no carry starting from the addition of any of the 4-bit groups , subtract 0011 from the

sum term of those groups (because when 2 decimal digits are added in xs-3 & there is no carry ,

result in xs-6). If there is a carry out, add 0011 to the sum term of those groups(because when

there is a carry, the invalid states are skipped and the result is normal binary).

 136.7 corrected difference
305.510 = 0011 0000 0101 . 0101
+831.110 = +1000 0011 0001 . 0001 9‘s comp of 1

6

 _

 +1011 0011 0110 . 0110 1011 is illegal code
 +0110 add 0110

DIGITAL LOGIC DESIGN Page no. 18

EX: 37 0110 1010

+28 +0101 1011

 _ _ _ _ _ _ _ _ _ _

65 1011 (1)0101 carry generated

+1 propagate carry

 _ _ _ _ _ _

1100 0101 add 0011 to correct 0101 &

-0011 +0011 subtract 0011 to correct 1100

 _ _ _ _ _ _ _ _

1001 1000 =6510

Excess -3 (XS-3) Subtraction:

Subtract the xs-3 no.s by subtracting each 4 bit group of the subtrahend from the

corresponding 4 bit group of the minuend starting form the LSD .if there is no borrow from the

next 4-bit group add 0011 to the difference term of such groups (because when decimal digits are

subtracted in xs-3 & there is no borrow , result is normal binary). I f there is a borrow , subtract

0011 from the differenceterm(b coz taking a borrow is equivalent to adding six invalid states ,

result is in xs-6)

Ex: 267-175

267 = 0101 1001 1010

-175= -0100 1010 1000

 _ _ _ _ _ _ _ _

0000 1111 0010

+0011 -0011 +0011

0011 1100 +0011 =9210

DIGITAL LOGIC DESIGN Page no. 19

Xs-3 subtraction using 9’s & 10’s compliment methods:

Subtraction is performed by the 9‘s compliment or 10‘s compliment

Ex:687-348 The subtrahend (348) xs -3 code & its compliment are:

9‘s comp of 348 = 651

Xs-3 code of 348 = 0110 0111 1011

1‘s comp of 348 in xs-3 = 1001 1000 0100

Xs=3 code of 348 in xs=3 = 1001 1000 0100

687 687

-348 → +651 9‘s compl of 348

339 (1)338

+1 end around carry

 _

339 corrected difference in decimal

 _ _ _ _ _ _ _ _ _ _

_ (1)0010 (1)0011 1110 carry generated

⁄⁄

+1 +1 propagate carry

 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-

(1)0011 0010 1110

+1 end around carry

 _ _ _ _ _ _ _ _ _ _ _ _ _ _

0011 0011 1111 (correct 1111 by sub0011 and

+0011

 _ _ _

+0011

_ _ _ _

_ _

+0011 correct both groups of 0011 by

_ _ _ adding 0011)

0110 0110 1100 corrected diff in xs-3 = 33010

1001 1011 1010 687 in xs-3
+1001 1000 0100 1‘s comp 348 in xs-3

DIGITAL LOGIC DESIGN Page no. 20

The Gray code (reflective –code):

Gray code is a non-weighted code & is not suitable for arithmetic operations. It is not a

BCD code . It is a cyclic code because successive code words in this code differ in one bit

position only i.e, it is a unit distance code.Popular of the unit distance code.It is also a reflective

code i.e,both reflective & unit distance. The n least significant bits for 2n through 2n+1-1 are the

mirror images of thosr for 0 through 2n-1.An N bit gray code can be obtained by reflecting an N-

1 bit code about an axis at the end of the code, & putting the MSB of 0 above the axis & the

MSB of 1 below the axis.

Reflection of gray codes:

Gray Code
Decimal

4 bit

binary 1 bit 2 bit 3 bit 4 bit

0 00 000 0000 0 0000

1 01 001 0001 1 0001

 11 011 0011 2 0010

10 010 0010 3 0011

 110 0110 4 0100

111 0111 5 0101

101 0101 6 0110

110 0100 7 0111

 1100

1101

1111

1110

1010

1011

1001

1000

8

9

10

11

12

13

14

15

1000

1001

1010

1011

1100

1101

1110

1111

DIGITAL LOGIC DESIGN Page no. 21

Binary codes block diagram

Error – Detecting codes: When binary data is transmitted & processed,it is susceptible to noise

that can alter or distort its contents. The 1‘s may get changed to 0‘s & 1‘s .because digital

systems must be accurate to the digit, error can pose a problem. Several schemes have been

devised to detect the occurrence of a single bit error in a binary word, so that whenever such an

error occurs the concerned binary word can be corrected & retransmitted.

Parity: The simplest techniques for detecting errors is that of adding an extra bit known as parity

bit to each word being transmitted.Two types of parity: Oddparity, evenparity forodd parity, the

parity bit is set to a ‗0‘ or a ‗1‘ at the transmitter such that the total no. of 1 bit in the word

including the parity bit is an odd no.For even parity, the parity bit is set to a ‗0‘ or a ‗1‘ at the

transmitter such that the parity bit is an even no.

Decimal 8421 code Odd parity Even parity

0 0000 1 0

1 0001 0 1

2 0010 0 1

3 0011 1 0

4 0100 0 1

5 0100 1 0

6 0110 1 0

7 0111 0 1

8 1000 0 1

9 1001 1 0

DIGITAL LOGIC DESIGN Page no. 22

When the digit data is received . a parity checking circuit generates an error signal if the

total no of 1‘s is even in an odd parity system or odd in an even parity system. This parity check

can always detect a single bit error but cannot detect 2 or more errors with in the same word.Odd

parity is used more often than even parity does not detect the situation. Where all 0‘s are created

by a short ckt or some other fault condition.

Ex: Even parity scheme

(a) 10101010 (b) 11110110 (c)10111001

Ans:

(a) No. of 1‘s in the word is even is 4 so there is no error

(b) No. of 1‘s in the word is even is 6 so there is no error

(c) No. of 1‘s in the word is odd is 5 so there is error

Ex: odd parity

(a)10110111 (b) 10011010 (c)11101010

Ans:

(a) No. of 1‘s in the word is even is 6 so word has error

(b) No. of 1‘s in the word is even is 4 so word has error

(c) No. of 1‘s in the word is odd is 5 so there is no error

Checksums:

Simple parity can‘t detect two errors within the same word. To overcome this, use a sort

of 2 dimensional parity. As each word is transmitted, it is added to the sum of the previously

transmitted words, and the sum retained at the transmitter end. At the end of transmission, the

sum called the check sum. Up to that time sent to the receiver. The receiver can check its sum

with the transmitted sum. If the two sums are the same, then no errors were detected at the

receiver end. If there is an error, the receiving location can ask for retransmission of the entire

data, used in teleprocessing systems.

Block parity:

Block of data shown is create the row & column parity bits for the data using odd parity.

The parity bit 0 or 1 is added column wise & row wise such that the total no. of 1‘s in each

column & row including the data bits & parity bit is odd as

DIGITAL LOGIC DESIGN Page no. 23

Error –Correcting Codes:

A code is said to be an error –correcting code, if the code word can always be deduced

from an erroneous word. For a code to be a single bit error correcting code, the minimum

distance of that code must be three. The minimum distance of that code is the smallest no. of bits

by which any two code words must differ. A code with minimum distance of 3 can‘t only correct

single bit errors but also detect (can‘t correct) two bit errors, The key to error correction is that

it must be possible to detect & locate erroneous that it must be possible to detect & locate

erroneous digits. If the location of an error has been determined. Then by complementing the

erroneous digit, the message can be corrected , error correcting , code is the Hamming code , In

this , to each group of m information or message or data bits, K parity checking bits denoted by

P1,P2,----------pk located at positions 2 k-1 from left are added to form an (m+k) bit code word.

To correct the error, k parity checks are performed on selected digits of each code word, & the

position of the error bit is located by forming an error word, & the error bit is then

complemented. The k bit error word is generated by putting a 0 or a 1 in the 2 k-1th position

depending upon whether the check for parity involving the parity bit Pk is satisfied or not.Error

positions & their corresponding values :

data

10110

10001

10101

00010

11000

00000

11010

Data Parity bit

10110 0

10001 1

10101 0

00010 0

11000 1

00000 1

11010 0

DIGITAL LOGIC DESIGN Page no. 24

Error Position For 15 bit code

C4 C3 C2 C1

For 12 bit code

C4 C3 C2 C1

For 7 bit code

C3 C2 C1

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 0 0 1

2 0 0 1 0 0 0 1 0 0 1 0

3 0 0 1 1 0 0 1 1 0 1 1

4 0 1 0 0 0 1 0 0 1 0 0

5 0 1 0 1 0 1 0 1 1 0 1

6 0 1 1 0 0 1 1 0 1 1 0

7 0 1 1 1 0 1 1 1 1 1 1

8 1 0 0 0 1 0 0 0

9 1 0 0 1 1 0 0 1

10 1 0 1 0 1 0 1 0

11 1 0 1 1 1 0 1 1

12 1 1 0 0 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

7- bit Hamming code:

To transmit four data bits, 3 parity bits located at positions 20 21&22 from left are

added to make a 7 bit codeword which is then transmitted.

The word format

P1 P2 D3 P4 D5 D6 D7

D—Data bits P-

Parity bits

Decimal Digit For BCD

P1P2D3P4D5D6D7

For Excess-3

P1P2D3P4D5D6D7

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

1 1 1 0 1 0 0 1 1 0 0 1 1 0 0

2 0 1 0 1 0 1 1 0 1 0 0 1 0 1

3 1 0 0 0 0 1 1 1 1 0 0 1 1 0

4 1 0 0 1 1 0 0 0 0 0 1 1 1 1

5 0 1 0 0 1 0 1 1 1 1 0 0 0 0

6 1 1 0 0 1 1 0 0 0 1 1 0 0 1

7 0 0 0 1 1 1 1 1 0 1 1 0 1 0

8 1 1 1 0 0 0 0 0 1 1 0 0 1 1

9 0 0 1 1 0 0 1 0 1 1 1 1 0 0

DIGITAL LOGIC DESIGN Page no. 25

Ex: Encode the data bits 1101 into the 7 bit even parity Hamming Code

The bit pattern is

P1P2D3P4D5D6D7

1 1 0 1

Bits 1,3,5,7 (P1 111) must have even parity, so P1 =1

Bits 2, 3, 6, 7(P2 101) must have even parity, so P2 =0

Bits 4,5,6,7 (P4 101)must have even parity, so P4 =0

The final code is 1010101

EX: Code word is 1001001

Bits 1,3,5,7 (C1 1001) →no error →put a 0 in the 1‘s position→C1=0

Bits 2, 3, 6, 7(C2 0001)) → error →put a 1 in the 2‘s position→C2=1

Bits 4,5,6,7 (C4 1001)) →no error →put a 0 in the 4‘s position→C3=0

15-bit Hamming Code: It transmit 11 data bits, 4 parity bits located 20 21 22 23

Word format is

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12 D13 D14 D15

12-Bit Hamming Code:It transmit 8 data bits, 4 parity bits located at position 20 21 22 23

Word format is

P1 P2 D3 P4 D5 D6 D7 P8 D9 D10 D11 D12

Alphanumeric Codes:

These codes are used to encode the characteristics of alphabet in addition to the decimal

digits. It is used for transmitting data between computers & its I/O device such as printers,

keyboards & video display terminals.Popular modern alphanumeric codes are ASCII code &

EBCDIC code.

DIGITAL LOGIC DESIGN Page no. 26

Digital Logic Gates

Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to

implement a Boolean function with these type of gates.

DIGITAL LOGIC DESIGN Page no. 27

Properties of XOR Gates

• XOR (also ) : the “not-equal” function

• XOR(X,Y) = X  Y = X’Y + XY’
• Identities:

– X  0 = X

– X  1 = X’

– X  X = 0

– X  X’ = 1
• Properties:

– X  Y = Y  X

– (X  Y)  W = X  (Y  W)

Universal Logic Gates

NAND and NOR gates are called Universal gates. All fundamental gates (NOT, AND, OR) can be
realized by using either only NAND or only NOR gate. A universal gate provides flexibility and
offers enormous advantage to logic designers.

NAND as a Universal Gate

NAND Known as a “universal” gate because ANY digital circuit can be implemented with NAND
gates alone.
To prove the above, it suffices to show that AND, OR, and NOT can be implemented using
NAND gates only.

DIGITAL LOGIC DESIGN Page no. 28

Boolean Algebra: In 1854, George Boole developed an algebraic system now called Boolean algebra. In

1938, Claude E. Shannon introduced a two‐valued Boolean algebra called switching algebra that

represented the properties of bistable electrical switching circuits. For the formal definition of Boolean

algebra, we shall employ the postulates formulated by E. V. Huntington in 1904.

Boolean algebra is a system of mathematical logic. It is an algebraic system consisting of the set of

elements (0, 1), two binary operators called OR, AND, and one unary operator NOT. It is the basic

mathematical tool in the analysis and synthesis of switching circuits. It is a way to express logic functions

algebraically.

 Boolean algebra, like any other deductive mathematical system, may be defined with aset of elements, a

set of operators, and a number of unproved axioms or postulates. A set of elements is anycollection of

objects having a common property. If S is a set and x and y are certain objects, then x Î Sdenotes that x is

a member of the set S, and y ÏS denotes that y is not an element of S. A set with adenumerable number of

elements is specified by braces: A = {1,2,3,4}, i.e. the elements of set A are thenumbers 1, 2, 3, and 4. A

binary operator defined on a set S of elements is a rule that assigns to each pair ofelements from S a

unique element from S._ Example: In a*b=c, we say that * is a binary operator if it specifies a rule for

finding c from the pair (a,b)and also if a, b, c Î S.

 Axioms and laws of Boolean algebra

Axioms or Postulates of Boolean algebra are a set of logical expressions that we accept without proof and

upon which we can build a set of useful theorems.

 AND Operation OR Operation NOT Operation

Axiom1 : 0.0=0 0+0=0 0=1

Axiom2: 0.1=0 0+1=1 1=0

Axiom3: 1.0=0 1+0=1
Axiom4: 1.1=1 1+1=1

AND Law OR Law

Law1: A.0=0 (Null law) Law1: A+0=A
Law2: A.1=A (Identity law) Law2: A+1=1
Law3: A.A=A (Impotence law) Law3: A+A=A (Impotence law)

CLOSURE: The Boolean system is closed with respect to a binary operator if for every pair of

Boolean values,it produces a Boolean result. For example, logical AND is closed in the Boolean

system because it accepts only Boolean operands and produces only Boolean results.

_ A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary

operator specifies a rule for obtaining a unique element of S.

_ For example, the set of natural numbers N = {1, 2, 3, 4, … 9} is closed with respect to the

binary operator plus (+) by the rule of arithmetic addition, since for any a, b Î N we obtain a

unique c Î N by the operation a + b = c.

DIGITAL LOGIC DESIGN Page no. 29

ASSOCIATIVE LAW:

A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y * z) for all x, y, z Î S,

forall Boolean values x, y and z.

COMMUTATIVE LAW:

A binary operator * on a set S is said to be commutative whenever x * y = y * x for all x, y, z є S

IDENTITY ELEMENT:

A set S is said to have an identity element with respect to a binary operation * on S if there exists an element

e є S with the property e * x = x * e = x for every x є S

BASIC IDENTITIES OF BOOLEAN ALGEBRA

• Postulate 1(Definition): A Boolean algebra is a closed algebraic system containing a set K of two or more

elements and the two operators · and + which refer to logical AND and logical OR •x + 0 = x

• x · 0 = 0

• x + 1 = 1

• x · 1 = 1

• x + x = x

• x · x = x

• x + x’ = x

• x · x’ = 0

• x + y = y + x

• xy = yx

• x + (y + z) = (x + y) + z

• x (yz) = (xy) z

• x (y + z) = xy + xz

• x + yz = (x + y)(x + z)

• (x + y)’ = x’ y’

• (xy)’ = x’ + y’

DIGITAL LOGIC DESIGN Page no. 30

• (x’)’ = x

DeMorgan's Theorem

(a) (a + b)' = a'b'

(b) (ab)' = a' + b'

Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z'
(b) (a.b … z)' = a' + b' + … z‘

Basic Theorems and Properties of Boolean algebra Commutative law

Law1: A+B=B+A Law2: A.B=B.A

Associative law

Law1: A + (B +C) = (A +B) +C Law2: A(B.C) = (A.B)C

Distributive law

Law1: A.(B + C) = AB+ AC Law2: A + BC = (A + B).(A +C)

Absorption law

Law1: A +AB =A Law2: A(A +B) = A

Solution: A(1+B) Solution: A.A+A.B

 A A+A.B
 A(1+B)
 A

Consensus Theorem

Theorem1. AB+ A’C + BC = AB + A’C Theorem2. (A+B). (A’+C).(B+C) =(A+B).(A’+C)

The BC term is called the consensus term and is redundant. The consensus term is formed from a

PAIR OF TERMS in which a variable (A) and its complement (A’) are present; the consensus

term is formed by multiplying the two terms and leaving out the selected variable and its

complement

Consensus Theorem1 Proof:

AB+A’C+BC=AB+A’C+(A+A’)BC

=AB+A’C+ABC+A’BC

DIGITAL LOGIC DESIGN Page no. 31

=AB(1+C)+A’C(1+B)

= AB+ A’C

Principle of Duality

Each postulate consists of two expressions statement one expression is transformed into the
other by interchanging the operations (+) and (⋅) as well as the identity elements 0 and 1.
Such expressions are known as duals of each other.
If some equivalence is proved, then its dual is also immediately true.

 If we prove: (x.x)+(x’+x’)=1, then we have by duality: (x+x)⋅(x’.x’)=0

The Huntington postulates were listed in pairs and designated by part (a) and part (b) in below
table.

Table for Postulates and Theorems of Boolean algebra
Part-A Part-B

A+0=A A.0=0

A+1=1 A.1=A

A+A=A (Impotence law) A.A=A (Impotence law)

A+ A̅=1 A. A̅=0

A̅=A (double inversion law) --

Commutative law: A+B=B+A A.B=B.A

Associative law: A + (B +C) = (A +B) +C A(B.C) = (A.B)C

Distributive law: A.(B + C) = AB+ AC A + BC = (A + B).(A +C)

Absorption law: A +AB =A A(A +B) = A

DeMorgan Theorem:
 (A+B) = A̅ . B̅

 (A.B) = = A̅ + B̅

Redundant Literal Rule: A+ A̅. B=A+B A.(A̅A+B)=AB

Consensus Theorem: AB+ A’C + BC = AB + A’C (A+B). (A’+C).(B+C) =(A+B).(A’+C)

Boolean Function
Boolean algebra is an algebra that deals with binary variables and logic operations.
A Boolean function described by an algebraic expression consists of binary variables, the

constants 0 and 1, and the logic operation symbols.

For a given value of the binary variables, the function can be equal to either 1 or 0.

F(vars) = expression

Set of binary Variables Operators (+, •, ‘)
Constants (0, 1)
Groupings (parenthesis)
Variables

Consider an example for the Boolean function

F1 = x + y’z

DIGITAL LOGIC DESIGN Page no. 32

The function F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is equal to 0
otherwise. The complement operation dictates that when y’ = 1, y = 0. Therefore, F1 = 1 if x = 1
or if y = 0 and z = 1.
A Boolean function expresses the logical relationship between binary variables and is evaluated
by determining the binary value of the expression for all possible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2n, where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from 0 through 2n - 1.

Truth Table for F1

Gate Implementation of F1 = x + y’z

Note:
Q: Let a function F() depend on n variables. How many rows are there in the truth table of F() ?
A: 2n rows, since there are 2n possible binary patterns/combinations for the n variables.

Truth Tables

• Enumerates all possible combinations of variable values and the corresponding function
value

• Truth tables for some arbitrary functions
F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the below.

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

x y z F1

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

DIGITAL LOGIC DESIGN Page no. 33

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1

• Truth table: a unique representation of a Boolean function

• If two functions have identical truth tables, the functions are equivalent (and vice-
versa).

• Truth tables can be used to prove equality theorems.

• However, the size of a truth table grows exponentially with the number of variables
involved, hence unwieldy. This motivates the use of Boolean Algebra.

Boolean expressions-NOT unique
Unlike truth tables, expressions epresenting
a Boolean function are NOT unique.

• Example:
– F(x,y,z) = x’•y’•z’ + x’•y•z’ +

x•y•z’

– G(x,y,z) = x’•y’•z’ + y•z’
• The corresponding truth tables for

F() and G() are to the right. They are
identical.

• Thus, F() = G()

Algebraic Manipulation (Minimization of Boolean function)
• Boolean algebra is a useful tool for simplifying digital circuits.
• Why do it? Simpler can mean cheaper, smaller, faster.
• Example: Simplify F = x’yz + x’yz’ + xz.

F= x’yz + x’yz’ + xz

= x’y(z+z’) + xz
= x’y•1 + xz

x y z F G

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0

DIGITAL LOGIC DESIGN Page no. 34

= x’y + xz

• Example: Prove

x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’
• Proof:

x’y’z’+ x’yz’+ xyz’
= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

Complement of a Function

• The complement of a function is derived by interchanging (• and +), and (1 and 0), and

complementing each variable.

• Otherwise, interchange 1s to 0s in the truth table column showing F.

• The complement of a function IS NOT THE SAME as the dual of a function.
Example

• Find G(x,y,z), the complement of F(x,y,z) = xy’z’ + x’yz
Ans: G = F’ = (xy’z’ + x’yz)’

= (xy’z’)’ • (x’yz)’ DeMorgan
= (x’+y+z) • (x+y’+z’) DeMorgan again

Note: The complement of a function can also be derived by finding the function’s dual, and
then complementing all of the literals

Canonical and Standard Forms

We need to consider formal techniques for the simplification of Boolean functions.

Identical functions will have exactly the same canonical form.

• Minterms and Maxterms

• Sum-of-Minterms and Product-of- Maxterms

• Product and Sum terms

• Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

Literal: A variable or its complement

Product term: literals connected by •

Sum term: literals connected by +

Minterm: a product term in which all the variables appear exactly once, either complemented or

uncomplemented.

DIGITAL LOGIC DESIGN Page no. 35

Maxterm: a sum term in which all the variables appear exactly once, either complemented or

uncomplemented.

Canonical form: Boolean functions expressed as a sum of Minterms or product of Maxterms are said to be
in canonical form.

Minterm
• Represents exactly one combination in the truth table.

• Denoted by mj, where j is the decimal equivalent of the minterm’s corresponding binary

combination (bj).

• A variable in mj is complemented if its value in bj is 0, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, bj = 011 and its corresponding minterm is denoted

by mj = A’BC

Maxterm

• Represents exactly one combination in the truth table.

• Denoted by Mj, where j is the decimal equivalent of the maxterm’s corresponding binary
combination (bj).

• A variable in Mj is complemented if its value in bj is 1, otherwise is uncomplemented.

Example: Assume 3 variables (A, B, C), and j=3. Then, bj = 011 and its corresponding maxterm is denoted
by Mj = A+B’+C’

Truth Table notation for Minterms and Maxterms

• Minterms and Maxterms are easy to denote using a truth table.

Example: Assume 3 variables x,y,z (order is fixed)

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7

Canonical Forms

DIGITAL LOGIC DESIGN Page no. 36

• Every function F() has two canonical forms:

– Canonical Sum-Of-Products (sum of minterms)

– Canonical Product-Of-Sums (product of maxterms)

Canonical Sum-Of-Products:

The minterms included are those mj such that F() = 1 in row j of the truth table for F().

Canonical Product-Of-Sums:

The maxterms included are those Mj such that F() = 0 in row j of the truth table for F().

Example

Consider a Truth table for f1(a,b,c) at right

The canonical sum-of-products form for f1 is

f1(a,b,c) = m1 + m2 + m4 + m6

= a’b’c + a’bc’ + ab’c’ + abc’

The canonical product-of-sums form for f1 is

f1(a,b,c) = M0 • M3 • M5 • M7

= (a+b+c)•(a+b’+c’)• (a’+b+c’)•(a’+b’+c’).

• Observe that: mj = Mj’

a b c f1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

DIGITAL LOGIC DESIGN Page no. 37

Shorthand: ∑ and ∏

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and m(1,2,4,6)

indicates that the minterms to be included are m1, m2, m4, and m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form, and M(0,3,5,7)

indicates that the maxterms to be included are M0, M3, M5, and M7.

• Since mj = Mj’ for any j,

∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c)

•

Conversion between Canonical Forms

• Replace ∑ with ∏ (or vice versa) and replace those j’s that appeared in the original form with those

that do not.

• Example:

f1(a,b,c)= a’b’c + a’bc’ + ab’c’ + abc’

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)

Standard Forms

Another way to express Boolean functions is in standard form. In this configuration, the terms that form

the function may contain one, two, or any number of literals.

There are two types of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product terms, with one or

more literals each. The sum denotes the ORing of these terms. An example of a function expressed as a

sum of products is

F1 = y’ + xy + x’yz’

The expression has three product terms, with one, two, and three literals. Their sum is, in effect, an OR

operation.

A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any

number of literals. The product denotes the ANDing of these terms. An example of a function expressed as

a product of sums is

F2 = x(y’ + z)(x’ + y + z’)

This expression has three sum terms, with one, two, and three literals. The product is an AND operation.

DIGITAL LOGIC DESIGN Page no. 38

Conversion of SOP from standard to canonical form

Example-1.

Express the Boolean function F = A + B’C as a sum of minterms.

Solution: The function has three variables: A, B, and C. The first term A is missing two variables; therefore,

A = A(B + B’) = AB + AB’

This function is still missing one variable, so

A = AB(C + C’) + AB’ (C + C’)

= ABC + ABC’ + AB’C + AB’C’

The second term B’C is missing one variable; hence,

B’C = B’C(A + A’) = AB’C + A’B’C

Combining all terms, we have

F = A + B’C

= ABC + ABC’ + AB’C + AB’C’+ A’B’C

But AB’C appears twice, and according to theorem (x + x = x), it is possible to remove one of those

occurrences. Rearranging the minterms in ascending order, we finally obtain

F = A’B’C + AB’C + AB’C + ABC’ + ABC

= m1 + m4 + m5 + m6 + m7

When a Boolean function is in its sum‐of‐minterms form, it is sometimes convenient to express the

function in the following brief notation:

F(A, B, C) = ∑m (1, 4, 5, 6, 7)

Example-2.

Express the Boolean function F = xy + x’z as a product of maxterms.

Solution: First, convert the function into OR terms by using the distributive law:

F = xy + x’z = (xy + x’)(xy + z)

= (x + x’)(y + x’)(x + z)(y + z)

= (x’+ y)(x + z)(y + z)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,

x’+ y = x’ + y + zz’ = (x’ + y + z)(x’ + y + z’)

x + z = x + z + yy’ = (x + y + z)(x + y’ + z)

y + z = y + z + xx’ = (x + y + z)(x’ + y + z)

Combining all the terms and removing those which appear more than once, we finally obtain

F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z)

F= M0M2M4M5

A convenient way to express this function is as

follows: F(x, y, z) = πM(0, 2, 4, 5)

The product symbol, π, denotes the ANDing of maxterms; the numbers are the indices of the maxterms of

the function.

DIGITAL LOGIC DESIGN Page no. 39

Unit-II

Minimization Techniques

Two-variable k-map:

A two-variable k-map can have 22=4 possible combinations of the input variables A and

B. Each of these combinations, , B,A ,AB(in the SOP form) is called a minterm.

The minterm may be represented in terms of their decimal designations – m0 for , m1 for

B,m2 for A and m3 for AB, assuming that A represents the MSB. The letter m stands for

minterm and the subscript represents the decimal designation of the minterm. The presence or

absence of a minterm in the expression indicates that the output of the logic circuit assumes logic

1 or logic 0 level for that combination of input variables.

The expression f= ,+ B+A +AB , it can be expressed using min

term as F= m0+m2+m3=∑m(0,2,3)

Using Truth Table:

Minterm Inputs
A B

Output
F

0 0 0 1

1 0 1 0

2 1 0 1

3 1 1 1

A 1 in the output contains that particular minterm in its sum and a 0 in that column indicates that

the particular mintermdoes not appear in the expression for output . this information can also be

indicated by a two-variable k-map.

Mapping of SOP Expresions:

A two-variable k-map has 22=4 squares .These squares are called cells. Each square on the k-

map represents a unique minterm. The minterm designation of the squares are placed in any

square, indicates that the corresponding minterm does output expressions. And a 0 or no entry in

any square indicates that the corresponding minterm does not appear in the expression for output.

The minterms of a two-variable k-map

DIGITAL LOGIC DESIGN Page no. 40

The mapping of the expressions =∑m(0,2,3)is

k-map of ∑m(0,2,3)

EX: Map the expressions f= B+A

F= m1+m2=∑m(1,2)The k-map is

Minimizations of SOP expressions:

To minimize Boolean expressions given in the SOP form by using the k-map, look for

adjacent adjacent squares having 1‘s minterms adjacent to each other, and combine them to form

larger squares to eliminate some variables. Two squares are said to be adjacent to each other, if

their minterms differ in only one variable. (i.e, B & A differ only in one variable. so they may

be combined to form a 2-square to eliminate the variable B.similarly all other.

The necessary condition for adjacency of minterms is that their decimal designations must

differ by a power of 2. A minterm can be combined with any number of minterms adjacent to it

to form larger squares. Two minterms which are adjacent to each other can be combined to form

a bigger square called a 2-square or a pair. This eliminates one variable – the variable that is not

common to both the minterms. For EX:

m0 and m1 can be combined to yield,

f1 = m0+m1= + B= (B+

)= m0 and m2 can be combined to yield,

f2 = m0+m2= + = (+)=

m1 and m3 can be combined to yield,

DIGITAL LOGIC DESIGN Page no. 41

f3= m1+m3= B+AB=B(+)=B

m2 and m3 can be combined to yield,

f4 = m2+m3=A +AB=A(B+)=A

m0 ,m1 ,m2 and m3 can be combined to yield,

= + +A +AB

= (B+) +A(B+)

= +A

=1

f1= f2= f3=B f4=A f5=1

The possible minterm groupings in a two-variable k-map.

Two 2-squares adjacent to each other can be combined to form a 4-square. A 4-square

eliminates 2 variables. A 4-square is called a quad. To read the squares on the map after

minimization, consider only those variables which remain constant through the square, and

ignore the variables which are varying. Write the non complemented variable if the variable is

remaining constant as a 1, and the complemented variable if the variable is remaining constant as

a 0, and write the variables as a product term. In the above figure f1 read as , because, along the

square , A remains constant as a 0, that is , as , where as B is changing from 0 to 1.

EX: Reduce the minterm f= +A +AB using mapping Expressed in terms of minterms, the

given expression is F=m0+m1+m2+ m3=m∑(0,1,3)& the figure shows the k-map for f and its

reduction . In one 2-square, A is constant as a 0 but B varies from a 0 to a 1, and in the other 2-

square, B is constant as a 1 but A varies from a 0 to a 1. So, the reduced expressions is +B.

It requires two gate inputs for realization as

f= +B (k-map in SOP form, and logic diagram.)

DIGITAL LOGIC DESIGN Page no. 42

The main criterion in the design of a digital circuit is that its cost should be as low as

possible. For that the expression used to realize that circuit must be minimal.Since the cost is

proportional to number of gate inputs in the circuit in the circuit, an expression is considered

minimal only if it corresponds to the least possible number of gate inputs. & there is no

guarantee for that k-map in SOP is the real minimal. To obtain real minimal expression, obtain

the minimal expression both in SOP & POS form form by using k-maps and take the minimal of

these two minimals.

The 1‘s on the k-map indicate the presence of minterms in the output expressions, where

as the 0s indicate the absence of minterms .Since the absence of a minterm in the SOP expression

means the presense of the corresponding maxterm in the POS expression of the same .when a

SOP expression is plotted on the k-map, 0s or no entries on the k-map represent the maxterms.

To obtain the minimal expression in the POS form, consider the 0s on the k-map and follow the

procedure used for combining 1s. Also, since the absence of a maxterm in the POS expression

means the presence of the corresponding minterm in the SOP expression of the same , when a

POS expression is plotted on the k-map, 1s or no entries on the k-map represent the minterms.

Mapping of POS expressions:

Each sum term in the standard POS expression is called a maxterm. A function in two

variables (A, B) has four possible maxterms, A+B,A+ , +B, +

. They are represented as M0, M1, M2, and M3respectively. The uppercase letter M stands for

maxterm and its subscript denotes the decimal designation of that maxterm obtained by treating

the non-complemented variable as a 0 and the complemented variable as a 1 and putting them

side by side for reading the decimal equivalent of the binary number so formed.

For mapping a POS expression on to the k-map, 0s are placed in the squares

corresponding to the maxterms which are presented in the expression an d1s are placed in the

squares corresponding to the maxterm which are not present in the expression. The decimal

designation of the squares of the squares for maxterms is the same as that for the minterms. A

two-variable k-map & the associated maxterms are asthe maxterms of a two-variable k-map

The possible maxterm groupings in a two-variable k-map

DIGITAL LOGIC DESIGN Page no. 43

Minimization of POS Expressions:

To obtain the minimal expression in POS form, map the given POS expression on to the

K-map and combine the adjacent 0s into as large squares as possible. Read the squares putting

the complemented variable if its value remains constant as a 1 and the non-complemented

variable if its value remains constant as a 0 along the entire square (ignoring the variables which

do not remain constant throughout the square) and then write them as a sum term.

Various maxterm combinations and the corresponding reduced expressions are shown in
figure. In this f1 read as A because A remains constant as a 0 throughout the square and B
changes from a 0 to a 1. f2 is read as B‘ because B remains constant along the square as a 1 and
A changes from a 0 to a 1. f5

Is read as a 0 because both the variables are changing along the square.

Ex: Reduce the expression f=(A+B)(A+B‘)(A‘+B‘) using mapping.

The given expression in terms of maxterms is f=πM(0,1,3). It requires two gates inputs

for realization of the reduced expression as

F=AB‘
K-map in POS form and logic diagram

In this given expression ,the maxterm M2 is absent. This is indicated by a 1 on the k-map. The
corresponding SOP expression is ∑m2 or AB‘. This realization is the same as that for the POS
form.

Three-variable K-map:

A function in three variables (A, B, C) expressed in the standard SOP form can have eight

possible combinations: A B C , AB C,A BC ,A BC,AB C ,AB C,ABC , and ABC. Each one of these

combinations designate d by m0,m1,m2,m3,m4,m5,m6, and m7, respectively, is called a

minterm. A is the MSB of the minterm designator and C is the LSB.

In the standard POS form, the eight possible combinations are:A+B+C, A+B+C ,
A+B +C,A+B + C ,A + B+ C,A + B + C ,A + B + C,A + B + C . Each oneof these combinations

designated by M0, M1, M2, M3, M4, M5, M6, and M7respectively is called a maxterm. A is the

MSB of the maxterm designator and C is the LSB.

A three-variable k-map has, therefore, 8(=23) squares or cells, and each square on the
map represents a minterm or maxterm as shown in figure. The small number on the top right

corner of each cell indicates the minterm or maxterm designation.

DIGITAL LOGIC DESIGN Page no. 44

The three-variable k-map.

The binary numbers along the top of the map indicate the condition of B and C for each

column. The binary number along the left side of the map against each row indicates the

condition of A for that row. For example, the binary number 01 on top of the second column in

fig indicates that the variable B appears in complemented form and the variable C in non-

complemented form in all the minterms in that column. The binary number 0 on the left of the

first row indicates that the variable A appears in complemented form in all the minterms in that

row, the binary numbers along the top of the k-map are not in normal binary order. They are,

infact, in the Gray code. This is to ensure that twophysically adjacent squares are really adjacent,

i.e., their minterms or maxterms differ by only one variable.

Ex: Map the expression f=: C+ + + +ABC

In the given expression , the minterms are : C=001=m1 ; =101=m5;

 =010=m2;

 =110=m6;ABC=111=m7.

So the expression is f=∑m(1,5,2,6,7)= ∑m(1,2,5,6,7). The corresponding k-map is

K-map in SOP form

Ex: Map the expression f= (A+B+C),(+ +) (+ +)(A + +)(+ +)

In the given expression the maxterms are

:A+B+C=000=M0; + + =101=M5; + + = 111=M7; A + + =011=M3; + +
 =110=M6.

So the expression is f = π M (0,5,7,3,6)= π M (0,3,5,6,7). The mapping of the expression is

DIGITAL LOGIC DESIGN Page no. 45

K-map in POS form.

Minimization of SOP and POS expressions:

For reducing the Boolean expressions in SOP (POS) form plotted on the k-map, look

at the 1s (0s) present on the map. These represent the minterms (maxterms). Look for the

minterms (maxterms) adjacent to each other, in order to combine them into larger squares.

Combining of adjacent squares in a k-map containing 1s (or 0s) for the purpose of simplification

of a SOP (or POS)expression is called looping. Some of the minterms (maxterms) may have

many adjacencies. Always start with the minterms (maxterm) with the least number of

adjacencies and try to form as large as large a square as possible. The larger must form a

geometric square or rectangle. They can be formed even by wrapping around, but cannot be

formed by using diagonal configurations. Next consider the minterm (maxterm) with next to the

least number of adjacencies and form as large a square as possible. Continue this till all the

minterms (maxterms) are taken care of . A minterm (maxterm) can be part of any number of

squares if it is helpful in reduction. Read the minimal expression from the k-map, corresponding

to the squares formed. There can be more than one minimal expression.

Two squares are said to be adjacent to each other (since the binary designations along

the top of the map and those along the left side of the map are in Gray code), if they are

physically adjacent to each other, or can be made adjacent to each other by wrapping around.

For squares to be combinable into bigger squares it is essential but not sufficient that their

minterm designations must differ by a power of two.

General procedure to simplify the Boolean expressions:

1. Plot the k-map and place 1s(0s) corresponding to the minterms (maxterms) of the SOP

(POS) expression.

2. Check the k-map for 1s(0s) which are not adjacent to any other 1(0). They are isolated

minterms(maxterms) . They are to be read as they are because they cannot be combined

even into a 2-square.

3. Check for those 1s(0S) which are adjacent to only one other 1(0) and make them pairs (2

squares).

4. Check for quads (4 squares) and octets (8 squares) of adjacent 1s (0s) even if they contain

some 1s(0s) which have already been combined. They must geometrically form a square

or a rectangle.

5. Check for any 1s(0s) that have not been combined yet and combine them into bigger

squares if possible.

6. Form the minimal expression by summing (multiplying) the product the product (sum)

terms of all the groups.

Reading the K-maps:

DIGITAL LOGIC DESIGN Page no. 46

While reading the reduced k-map in SOP (POS) form, the variable which remains

constant as 0 along the square is written as the complemented (non-complemented) variable and

the one which remains constant as 1 along the square is written as non-complemented

(complemented) variable and the term as a product (sum) term. All the product (sum) terms are

added (multiplied).

Some possible combinations of minterms and the corresponding minimal expressions
readfrom the k-maps are shown in fig: Here f6 is read as 1, because along the 8-square no

variable remains constant. F5 is read as , because, along the 4-square formed by0,m1,m2 and
m3 , the variables B and C are changing, and A remains constant as a 0. Algebraically,

f5= m0+m1+m2+m3

= + C+ +
= (+C)+ B(C+)

= + B

= (+B)=

f3 is read as + , because in the 4-square formed by m0,m2,m6, and m4, the variable A and B

are changing , where as the variable C remains constant as a 0. So it is read as . In the 4-square

formed by m0, m1, m4, m5, A and C are changing but B remains constant as a 0. So it is read as

. So, the resultant expression for f3 is the sum of these two, i.e., + .

f1 is read as + + ,because in the 2-square formed by m0 and m4 , A is changing from a 0

to a 1. Whereas B and C remain constant as a 0. So it s read as . In the 2-square formed

by m0 and m1, C is changing from a 0 to a 1, whereas A and B remain constant as a 0. So it is

read as .In the 2-square formed by m0 and m2 , B is changing from a 0 to a 1 whereas A

and C remain constant as a 0. So, it is read as . Therefore, the resultant SOP

expression is

 + +

Some possible maxterm groupings and the corresponding minimal POS expressions read from

the k-map are

DIGITAL LOGIC DESIGN Page no. 47

In this figure, along the 4-square formed by M1, M3, M7, M5, A and B are changing from a 0 to

a 1, where as C remains constant as a 1. SO it is read as . Along the 4-squad formed by M3,

M2, M7, and M6, variables A and C are changing from a 0 to a 1. But B remains constant as a 1.

So it is read as . The minimal expression is the product of these two terms , i.e., f1 = ()().also

in this figure, along the 2-square formed by M4 and M6 , variable B is changing from a 0 to a 1,

while variable A remains constant as a 1 and variable C remains constant as a 0. SO, read it

as

 +C. Similarly, the 2-square formed by M7 andM6 is read as + , while the 2-square formed

by M2 and M6 is read as +C. The minimal expression is the product of these sum terms, i.e, f2

=(+)+(+)+(+C)

Ex:Reduce the expression f=∑m(0,2,3,4,5,6) using mapping and implement it in AOI logic as

well as in NAND logic.The Sop k-map and its reduction , and the implementation of the minimal

expression using AOI logic and the corresponding NAND logic are shown in figures below

In SOP k-map, the reduction is done as:

1. m5 has only one adjacency m4 , so combine m5 and m4 into a square. Along this 2-square

A remains constant as 1 and B remains constant as 0 but C varies from 0 to 1. So read it

as A .

2. m3 has only one adjacency m2 , so combine m3 and m2 into a square. Along this 2-square

A remains constant as 0 and B remains constant as 1 but C varies from 1 to 0. So read it

as B.

3. m6 can form a 2-square with m2 and m4 can form a 2-square with m0, but observe that by

wrapping the map from left to right m0, m4 ,m2 ,m6 can form a 4-square. Out of these m2

andm4 have already been combined but they can be utilized again. So make it. Along this

4-square, A is changing from 0 to 1 and B is also changing from 0 to 1 but C is remaining

constant as 0. so read it as .

4. Write all the product terms in SOP form. So the minimal SOP expression is

fmin=

k-map AOI logic NAND logic

DIGITAL LOGIC DESIGN Page no. 48

Four variable k-maps:

Four variable k-map expressions can have 24=16 possible combinations of input variables such

as , ,------------ABCD with minterm designations m0,m1 -------------------- m15 respectively

in SOP form & A+B+C+D, A+B+C+ ,---------- + + + with maxterms M0,M1, ---------

-

-M15 respectively in POS form. It has 24=16 squares or cells.The binary number designations of

rows & columns are in the gray code. Here follows 01 & 10 follows 11 called Adjacency

ordering.

SOP form POS form

EX:

DIGITAL LOGIC DESIGN Page no. 49

Five variable k-map:

Five variable k-map can have 25 =32 possible combinations of input variable as

 , E,--------ABCDE with minterms m0, m1-----m31 respectively in SOP &

A+B+C+D+E, A+B+C+ ,---------- + + + + with maxterms M0,M1, -----------

M31 respectively in POS form. It has 25=32 squares or cells of the k-map are divided into 2

blocks of

16 squares each.The left block represents minterms from m0 to m15 in which A is a 0, and the

right block represents minterms from m16 to m31 in which A is 1.The 5-variable k-map may

contain 2-squares, 4-squares , 8-squares , 16-squares or 32-squares involving these two blocks.

Squares are also considered adjacent in these two blocks, if when superimposing one block on

top of another, the squares coincide with one another.

Grouping s is

DIGITAL LOGIC DESIGN Page no. 50

Ex: F=∑m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) is SOP

POS is F=πM(2,3,7,8,9,10,11,12,16,17,18,19,20,21,23,26,27)

The real minimal expression is the minimal of the SOP and POS forms.

The reduction is done as

1. There is no isolated 1s

2. M12 can go only with m13. Form a 2-square which is read as A‘BCD‘

3. M0 can go with m2,m16 and m18 . so form a 4-square which is read as B‘C‘E‘

4. M20,m21,m17 and m16 form a 4-square which is read as AB‘D‘

5. M2,m3,m18,m19,m10,m11,m26 and m27 form an 8-square which is read as C‘d

6. Write all the product terms in SOP form.

So the minimal expression is

Fmin= A‘BCD‘+B‘C‘E‘+AB‘D‘+C‘D(16 inputs)

In the POS k-map ,the reduction is done as:

1. There are no isolated 0s

3.

4.M8

5. M28

6.M30

7. Sum terms in POS form. So the minimal expression in POS is

Fmin= A‘BcD‘+B‘C‘E‘+AB‘D‘+C‘D

DIGITAL LOGIC DESIGN Page no. 51

Six variable k-map:

Six variable k-map can have 26 =64 combinations as , ,---------

---ABCDEF with minterms m0, m1-----m63 respectively in SOP & (A+B+C+D+E+F), ---------- (
+ + + + +) with maxterms M0,M1, -----------M63 respectively in POS form. It has

26=64 squares or cells of the k-map are divided into 4 blocks of 16 squares each.

Some possible groupings in a six variable k-map

Don’t care combinations:For certain input combinations, the value of the output is unspecified

either because the input combinations are invalid or because the precise value of the output is of

no consequence. The combinations for which the value of experiments are not specified are

called don‘t care combinations are invalid or because the precise value of the output is of no

consequence. The combinations for which the value of expressions is not specified are called

don‘t care combinations or Optional Combinations, such expressions stand incompletely

specified. The output is a don‘t care for these invalid combinations.

Ex:In XS-3 code system, the binary states 0000, 0001, 0010,1101,1110,1111 are unspecified. &

never occur called don‘t cares.

A standard SOP expression with don‘t cares can be converted into a standard POS

form by keeping the don‘t cares as they are & writing the missing minterms of the SOP form as

the maxterms of the POS form viceversa.

Don‘t cares denoted by ‗X‘ or ‗φ‘

DIGITAL LOGIC DESIGN Page no. 52

Ex:f=∑m(1,5,6,12,13,14)+d(2,4)

Or f=π M(0,3,7,9,10,11,15).πd(2,4)

SOP minimal form fmin= +B +

POS minimal form fmin=(B+D)(+B)(+D)

= + + + + (+

Prime implicants, Essential Prime implicants, Redundant prime implicants:

Each square or rectangle made up of the bunch of adjacent minterms is called a subcube. Each of

these subcubes is called a Prime implicant (PI). The PI which contains at leastone which cannot

be covered by any other prime implicants is called as Essential Prime implicant (EPI).The PI

whose each 1 is covered at least by one EPI is called a Redundant Prime implicant (RPI). A PI

which is neither an EPI nor a RPI is called a Selective Prime implicant (SPI).

The function has unique MSP comprising EPI is

F(A,B,C,D)= CD+ABC+A D + B

The RPI ‗BD‘ may be included without changing the function but the resulting expression would

not be in minimal SOP(MSP) form.

Essential and Redundant Prime Implicants

DIGITAL LOGIC DESIGN Page no. 53

F(A,B,C,D)=∑m(0,4,5,10,11,13,15) SPI are marked by dotted squares, shows

MSP form of a function need not be unique.

Essential and Selective Prime Implicants

Here, the MSP form is obtained by including two EPI‘s & selecting a set of SPI‘s to cover

remaining uncovered minterms 5,13,15. & these can be covered as

(A) (4,5) &(13,15) ---------- B +ABD

(B) (5,13) & (13,15) -------- B D+ABD

(C) (5,13) & (15,11) ------- B D+ACD

F(A,B,C,D)= +A C---------EPI‘s + B +ABD

(OR) F(A,B,C,D)= +A C---------EPI‘s + B D+ABD

(OR) F(A,B,C,D)= +A C---------EPI‘s + B D+ACD

False PI’s Essential False PI’s, Redundant False PI’s & Selective False PI’s:

The maxterms are called falseminterms. The PI‘s is obtained by using the maxterms are

called False PI‘s (FPI). The FPI which contains at least one ‗0‘ which can‘t be covered by only

other FPI is called an Essential False Prime implicant (ESPI)

F(A,B,C,D)= ∑m(0,1,2,3,4,8,12)

=π M(5,6,7,9,10,11,13,14,15)

Fmin= (+)(+)(+)(+)

All the FPI, EFPI‘s as each of them contain atleast one ‗0‘ which can‘t be covered by any other

FPI

DIGITAL LOGIC DESIGN Page no. 54

Essential False Prime implicants

Consider Function F(A,B,C,D)= π M(0,1,2,6,8,10,11,12)

Essential and Redundant False Prime Implicants

Mapping when the function is not expressed in minterms (maxterms):

An expression in k-map must be available as a sum (product) of minterms (maxterms). However

if not so expressed, it is not necessary to expand the expression algebraically into its minterms

(maxterms). Instead, expansion into minterms (maxterms) can be accomplished in the process of

entering the terms of the expression on the k-map.

Limitations of Karnaugh maps:

• Convenient as long as the number of variables does not exceed six.

• Manual technique, simplification process is heavily dependent on the human abilities.

Quine-Mccluskey Method:

It also known as Tabular method. It is more systematic method of minimizing expressions

of even larger number of variables. It is suitable for hand computation as well as computation by

machines i.e., programmable. . The procedure is based on repeated application of the combining

theorem.

PA+P =P (P is set of literals) on all adjacent pairs of terms, yields the set of all PI‘s from which

a minimal sum may be selected.

Consider expression

∑m(0,1,4,5)= + C+A +A C

DIGITAL LOGIC DESIGN Page no. 55

First, second terms & third, fourth terms can be combined

 (+)+ (C+)= +A

Reduced to

 (+)=

The same result can be obtained by combining m0& m4 & m1&m5 in first step & resulting terms

in the second step .

Procedure:

• Decimal Representation

• Don‘t cares

• PI chart

• EPI

• Dominating Rows & Columns

• Determination of Minimal expressions in comples cases.

Branching Method:

DIGITAL LOGIC DESIGN Page no. 56

DIGITAL LOGIC DESIGN Page no. 57

EX:

DIGITAL LOGIC DESIGN Page no. 58

DIGITAL LOGIC DESIGN Page no. 59

DIGITAL LOGIC DESIGN Page no. 60

UNIT-III

COMBINATIONAL CIRCUITS

Combinational Logic

• Logic circuits for digital systems may be combinational or sequential.

• A combinational circuit consists of input variables, logic gates, and output variables.

For n input variables,there are 2n possible combinations of binary input variables .For

each possible input Combination ,there is one and only one possible output combination.A

combinational circuit can be described by m Boolean functions one for each output

variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1. The problem is stated

2. The number of available input variables and required output variables is
determined. 3.The input and output variables are assigned lettersymbols.
4.The truth table that defines the required relationship between inputs and outputs is derived.

5.The simplified Boolean function for each output is obtained.

DIGITAL LOGIC DESIGN Page no. 61

Adders:

Digital computers perform variety of information processing tasks,the one is arithmetic

operations.And the most basic arithmetic operation is the addition of two binary digits.i.e, 4 basic

possible operations are:

0+0=0,0+1=1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and addend

bits are equal to 1,the binary sum consists of two digits.The higher significant bit of this result is

called a carry.A combinational circuit that performs the addition of two bits is called a half-

adder. One that performs the addition of 3 bits (two significant bits & previous carry) is called a

full adder.& 2 half adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs (augends and

addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and

produces the sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single

bit words.

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is the

X-OR of A and B (It represents the LSB of the sum). Therefore,

S=A𝐵+𝐴

The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1).Therefore,

C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

Logic diagrams of half-adder

DIGITAL LOGIC DESIGN Page no. 62

NAND LOGIC:

NOR Logic:

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum

bit and a carry bit. To add two binary numbers, each having two or more bits, the LSBs can be

added by using a half-adder. The carry resulted from the addition of the LSBs is carried over to

the next significant column and added to the two bits in that column. So, in the second and

higher columns, the two data bits of that column and the carry bit generated from the addition in

the previous column need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the

carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S

gives the value of the least significant bit of the sum. The variable Cout gives the output carry.The

DIGITAL LOGIC DESIGN Page no. 63

eight rows under the input variables designate all possible combinations of 1s and 0s that these

variables may have. The 1s and 0s for the output variables are determined from the arithmetic

sum of the input bits. When all the bits are 0s , the output is 0. The S output is equal to 1 when

only 1 input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or

three inputs are equal to 1.

From the truth table, a circuit that will produce the correct sum and carry bits in response to

every possible combination of A,B and Cin is described by

S = ABCin + ABCin + ABCin + ABCin

Cout = ABCin + ABCin + ABCin + ABCin

and

S = A  B  Cin

Cout = ACin + BCin + AB

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the modulo

sum of the data bits in that column and the carry from the previous column. The logic diagram

of the full-adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR

gate is

DIGITAL LOGIC DESIGN Page no. 64

Even though a full-adder can be constructed using two half-adders, the disadvantage is that the

bits must propagate through several gates in accession, which makes the total propagation delay

greater than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only NAND gates or

only NOR gates as

NAND Logic:

DIGITAL LOGIC DESIGN Page no. 65

NOR Logic:

Subtractors:

The subtraction of two binary numbers may be accomplished by taking the complement

of the subtrahend and adding it to the minuend. By this, the subtraction operation becomes an

addition operation and instead of having a separate circuit for subtraction, the adder itself can be

used to perform subtraction. This results in reduction of hardware. In subtraction, each

subtrahend bit of the number is subtracted from its corresponding significant minuend bit to form

a difference bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the

next significant position., that has been borrowed must be conveyed to the next higher pair of

bits by means of a signal coming out (output) of a given stage and going into (input) the next

higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from the other and

produces the difference. It also has an output to specify if a 1 has been borrowed. . It is used to

subtract the LSB of the subtrahend from the LSB of the minuend when one binary number is

subtracted from the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two

outputs d and b. d indicates the difference and b is the output signal generated that informs the

next stage that a 1 has been borrowed. When a bit B is subtracted from another bit A, a

difference bit (d) and a borrow bit (b) result according to the rules given as

DIGITAL LOGIC DESIGN Page no. 66

The output borrow b is a 0 as long as A≥B. It is a 1 for A=0 and B=1. The d output is the result

of the arithmetic operation2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every possible

combination of the two 1-bit numbers is , therefore ,

d=A𝐵+𝐴 and b=𝐴 B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is obtained

by ANDing the complement of the minuend with the subtrahend.Note that logic for this exactly

the same as the logic for output S in the half-adder.

A half-substractor can also be realized using universal logic either using only NAND gates or

using NOR gates as:

NAND Logic:

NOR Logic:

DIGITAL LOGIC DESIGN Page no. 67

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow

during the subtraction of the LSBs, it affects the subtraction in the next higher column; the

subtrahend bit is subtracted from the minuend bit, considering the borrow from that column used

for the subtraction in the preceding column. Such a subtraction is performed by a full-subtractor.

It subtracts one bit (B) from another bit (A) , when already there is a borrow bi from this column

for the subtraction in the preceding column, and outputs the difference bit (d) and the borrow

bit(b) required from the next d and b. The two outputs present the difference and output borrow.

The 1s and 0s for the output variables are determined from the subtraction of A-B-bi.

From the truth table, a circuit that will produce the correct difference and borrow bits in response

to every possiblecombinations of A,B and bi is

A full-subtractor can be realized using X-OR gates and AOI gates as

33

The full subtractor can also be realized using universal logic either using only NAND gates or

using NOR gates as:

NAND Logic:

NOR Logic:

34

Binary Parallel Adder:

A binary parallel adder is a digital circuit that adds two binary numbers in parallel form

and produces the arithmetic sum of those numbers in parallel form. It consists of full adders

connected in a chain , with the output carry from each full-adder connected to the input carry of

the next full-adder in the chain.

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The

augends bits of A and addend bits of B are designated by subscript numbers from right to left,

with subscript 1 denoting the lower –order bit. The carries are connected in a chain through the

full-adders. The input carry to the adder is Cin and the output carry is C4. The S output generates

the required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has

four terminals for the augends bits, four terminals for the addend bits, four terminals for the sum

bits, and two terminals for the input and output carries. AN n-bit parallel adder requires n-full

adders. It can be constructed from 4-bit, 2-bit and 1-bit full adder ICs by cascading several

packages. The output carry from one package must be connected to the input carry of the one

with the next higher –order bits. The 4-bit full adder is a typical example of an MSI function.

Ripple carry adder:

In the parallel adder, the carry –out of each stage is connected to the carry-in of

the next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after

the carry-in of that stage occurs. This is due to the propagation delays in the logic circuitry,

35

which lead to a time delay in the addition process. The carry propagation delay for each full-

adder is the time between the application of the carry-in and the occurrence of the carry-out.

The 4-bit parallel adder, the sum (S1) and carry-out (C1) bits given by FA1 are not valid, until

after the propagation delay of FA1. Similarly, the sum S2 and carry-out (C2) bits given by FA2 are

not valid until after the cumulative propagation delay of two full adders (FA1 and FA2) , and so

on. At each stage ,the sum bit is not valid until after the carry bits in all the preceding stages are

valid. Carry bits must propagate or ripple through all stages before the most significant sum bit is

valid. Thus, the total sum (the parallel output) is not valid until after the cumulative delay of all

the adders.

The parallel adder in which the carry-out of each full-adder is the carry-in to the next most

significant adder is called a ripple carry adder.. The greater the number of bits that a ripple carry

adder must add, the greater the time required for it to perform a valid addition. If two numbers

are added such that no carries occur between stages, then the add time is simply the propagation

time through a single full-adder.

4- Bit Parallel Subtractor:

The subtraction of binary numbers can be carried out most conveniently by means of

complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding

it to A . The 2‘s complement can be obtained by taking the 1‘s complement and adding 1 to the

least significant pair of bits. The 1‘s complement can be implemented with inverters as

Binary-Adder Subtractor:

A 4-bit adder-subtractor, the addition and subtraction operations are combined into

one circuit with one common binary adder. This is done by including an X-OR gate with each

full-adder. The mode input M controls the operation. When M=0, the circuit is an adder, and

when M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the

inputs of B. When M=0, .The full-adder receives the value of B , the input carry is 0

36

and the circuit performs A+B. when and C1=1. The B inputs are complemented and
a 1 is through the input carry. The circuit performs the operation A plus the 2‘s complement of B.

The Look-Ahead –Carry Adder:

In parallel-adder,the speed with which an addition can be performed is governed by

the time required for the carries to propagate or ripple through all of the stages of the adder. The

look-ahead carry adder speeds up the process by eliminating this ripple carry delay. It examines

all the input bits simultaneously and also generates the carry-in bits for all the stages

simultaneously.

The method of speeding up the addition process is based on the two additional

functions of the full-adder, called the carry generate and carry propagate functions.

Consider one full adder stage; say the nth stage of a parallel adder as shown in fig.

we know that is made by two half adders and that the half adder contains an X-OR gate to

produce the sum and an AND gate to produce the carry. If both the bits An and Bn are 1s, a carry

has to be generated in this stage regardless of whether the input carry Cin is a 0 or a 1. This is

called generated carry, expressed as Gn= An.Bn which has to appear at the output through the OR

gate as shown in fig.

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder

at the input produces an intermediary sum bit- call it Pn –which is expressed as .

Next Pn and Cn are added using the X-OR gate inside the second half adder to produce the final

37

sum bit and and output carryC0= Pn.Cn=()Cn which
becomes carry for the (n+1) thstage.

Consider the case of both Pn and Cn being 1. The input carry Cn has to be propagated
to the output only if Pn is 1. If Pn is 0, even if Cn is 1, the and gate in the second half-adder will
inhibit Cn . the carry out of the nth stage is 1 when either Gn=1 or Pn.Cn =1 or both Gn and Pn.Cn

are equal to 1.

For the final sum and carry outputs of the nth stage, we get the following Boolean

expressions.

Observe the recursive nature of the expression for the output carry

at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to express the

output carry of a higher significant stage is the carry-out of the previous stage.

Based on these , the expression for the carry-outs of various full adders are as follows,

Observe that the final output carry is expressed as a function of

the input variables in SOP form. Which is two level AND-OR or equivalent NAND-NAND

form. Observe that the full look-ahead scheme requires the use of OR gate with (n+1) inputs and

AND gates with number of inputs varying from 2 to (n+1).

38

2’s complement Addition and Subtraction using Parallel Adders:

Most modern computers use the 2‘s complement system to represent negative numbers

and to perform subtraction operations of signed numbers can be performed using only the

addition operation ,if we use the 2‘s complement form to represent negative numbers.

The circuit shown can perform both addition and subtraction in the 2‘s complement. This

adder/subtractor circuit is controlled by the control signal ADD/SUB‘. When the ADD/SUB‘

level is HIGH, the circuit performs the addition of the numbers stored in registers A and B.

When the ADD/Sub‘ level is LOW, the circuit subtract the number in register B from the number

in register A. The operation is:

When ADD/SUB‘ is a 1:

1. AND gates 1,3,5 and 7 are enabled , allowing B0,B1,B2and B3 to pass to the OR gates

9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking B0‘,B1‘,B2‘, and B3‘ from
reaching the OR gates 9,10,11 and 12.

2. The two levels B0 to B3 pass through the OR gates to the 4-bit parallel adder, to be added
to the bits A0 to A3. The sum appears at the output S0 to S3

3. Add/SUB‘ =1 causes no carry into the adder.

When ADD/SUB‘ is a 0:

1. AND gates 1,3,5 and 7 are disabled , allowing B0,B1,B2and B3 from reaching the OR gates
9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking B0‘,B1‘,B2‘, and B3‘ from
reaching the OR gates.

39

2. The two levels B0‘ to B3‘ pass through the OR gates to the 4-bit parallel adder, to be
added to the bits A0 to A3.The C0 is now 1.thus the number in register B is converted to
its 2‘s complement form.

3. The difference appears at the output S0 toS3.

Adders/Subtractors used for adding and subtracting signed binary numbers. In computers , the

output is transferred into the register A (accumulator) so that the result of the addition or

subtraction always end up stored in the register A This is accomplished by applying a transfer

pulse to the CLK inputs of register A.

Serial Adder:

A serial adder is used to add binary numbers in serial form. The two binary numbers to be

added serially are stored in two shift registers A and B. Bits are added one pair at a time through

a single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to a D flip-

flop. The output of this flip-flop is then used as the carry input for the next pair of significant

bits. The sum bit from the S output of the full-adder could be transferred to a third shift register.

By shifting the sum into A while the bits of A are shifted out, it is possible to use one register for

storing both augend and the sum bits. The serial input register B can be used to transfer a new

binary number while the addend bits are shifted out during the addition.

The operation of the serial adder is:

Initially register A holds the augend, register B holds the addend and the carry flip-flop is

cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at x

and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both

registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A , and

the output carry is transferred into flip-flop Q . The shift control enables the registers for a

number of clock pulses equal to the number of bits of the registers. For each succeeding clock

pulse a new sum bit is transferred to A, a new carry is transferred to Q, and both registers are

shifted once to the right. This process continues until the shift control is disabled. Thus the

addition is accomplished by passing each pair of bits together with the previous carry through a

single full adder circuit and transferring the sum, one bit at a time, into register A.

40

Initially, register A and the carry flip-flop are cleared to 0 and then the first number is

added from B. While B is shifted through the full adder, a second number is transferred to it

through its serial input. The second number is then added to the content of register A while a

third number is transferred serially into register B. This can be repeated to form the addition of

two, three, or more numbers and accumulate their sum in register A.

Difference between Serial and Parallel Adders:

The parallel adder registers with parallel load, whereas the serial adder uses shift

registers. The number of full adder circuits in the parallel adder is equal to the number of bits in

the binary numbers, whereas the serial adder requires only one full adder circuit and a carry flip-

flop. Excluding the registers, the parallel adder is a combinational circuit, whereas the serial

adder is a sequential circuit. The sequential circuit in the serial adder consists of a full-adder and

a flip-flop that stores the output carry.

BCD Adder:

The BCD addition process:

1. Add the 4-bit BCD code groups for each decimal digit position using ordinary binary

addition.

2. For those positions where the sum is 9 or less, the sum is in proper BCD form and no

correction is needed.

3. When the sum of two digits is greater than 9, a correction of 0110 should be added

to that sum, to produce the proper BCD result. This will produce a carry to be added

to the next decimalposition.

A BCD adder circuit must be able to operate in accordance with the above steps. In other words,

the circuit must be able to do the following:

1. Add two 4-bit BCD code groups, usingstraight binaryaddition.

41

2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if it is , add

0110 (decimal 6) to this sum and generate a carry to the next decimalposition.

The first requirement is easily met by using a 4- bit binary parallel adder such as the 74LS83

IC .For example , if the two BCD code groups A3A2A1A0and B3B2B1B0 are applied to a 4-bit

parallel adder, the adder will output S4S3S2S1S0 , where S4 is actually C4 , the carry –out of the

MSB bits.

The sum outputs S4S3S2S1S0 can range anywhere from 00000 to 100109when both the

BCD code groups are 1001=9). The circuitry for a BCD adder must include the logic needed to

detect whenever the sum is greater than 01001, so that the correction can be added in. Those

cases , where the sum is greater than 1001 are listed as:

Let us define a logic output X that will go HIGH only when the sum is greater than 01001

(i.e, for the cases in table). If examine these cases ,see that X will be HIGH for either of the

following conditions:

1. Whenever S4 =1(sum greater than15)

2. Whenever S3 =1 and either S2 or S1 or both are 1 (sum 10 to 15)

This condition can be expressedas

X=S4+S3(S2+S1)

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to

generate a carry. The circuit consists of three basic parts. The two BCD code groups A3A2A1A0

and B3B2B1B0 are added together in the upper 4-bit adder, to produce the sum S4S3S2S1S0. The

logic gates shown implement the expression for X. The lower 4-bit adder will add the correction

0110 to the sum bits, only when X=1, producing the final BCD sum output represented by

∑3∑2∑1∑0. The X is also the carry-out that is produced when the sum is greater than 01001.

When X=0, there is no carry and no addition of 0110. In such cases, ∑3∑2∑1∑0= S3S2S1S0.

42

Two or more BCD adders can be connected in cascade when two or more digit decimal

numbers are to be added. The carry-out of the first BCD adder is connected as the carry-in of the

second BCD adder, the carry-out of the second BCD adder is connected as the carry-in of the

third BCD adder and so on.

EXCESS-3(XS-3) ADDER:

To perform Excess-3 additions,

1. Add two xs-3 codegroups
2. If carry=1, add 0011(3) to the sum of those two codegroups

If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two code

groups.

Ex: Add 9 and 5

1100 9 in Xs-3
 +1000

___ _ _ __

5 in xs-3

1 0100 there is a carry

+0011

0011

add 3 to each group

0100 0111 14 in xs-3

(1) (4)

EX:

Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (A3

A2A1A0) and addend (B3B2B1B0) in xs-3 are added using the 4-bit parallel adder. If the carry is a
1, then 0011(3) is added to the sum bits S3S2S1S0 of the upper adder in the lower 4-bit parallel

43

adder. If the carry is a 0, then 1101(3) is added to the sum bits (This is equivalent to subtracting
0011(3) from the sum bits. The correct sum in xs-3 is obtained

Excess-3 (XS-3) Subtractor:

To perform Excess-3 subtraction,

1. Complement thesubtrahend
2. Add the complemented subtrahend to theminuend.
3. If carry =1, result is positive. Add 3 and end around carry to the result . Ifcarry=0,

the result is negative. Subtract 3, i.e, and take the 1‘s complement of the result.

Ex: Perform 9-4

1100 9 in xs-3

+1000 Complement of 4 n Xs-3

(1) 0100 There is a carry
+0011 Add 0011(3)

0111

1 End around carry

1000 5 in xs-3

The minuend and the 1‘s complement of the subtrahend in xs-3 are added in the upper 4-

bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum bits

of the upper adder in the lower adder and the sum bits of the lower adder are complemented to

get the result. If the carry-out from the upper adder is a 1, then 3=0011 is added to the sum bits

of the lower adder and the sum bits of the lower adder give the result.

Binary Multipliers:

In binary multiplication by the paper and pencil method, is modified somewhat in digital
machines because a binary adder can add only two binary numbers at a time.

In a binary multiplier, instead of adding all the partial products at the end, they are added two at

a time and their sum accumulated in a register (the accumulator register). In addition, when the

multiplier bit is a 0,0s are not written down and added because it does not affect the final result.

Instead, the multiplicand is shifted left by one bit.

The multiplication of 1110 by 1001 using this processis

Multiplicand 1110

Multiplier 1001

1110 The LSB of the multiplier is a 1; write down the

multiplicand; shift the multiplicand one position to the left

(1 1 1 0 0)

1110 The second multiplier bit is a 0; write down the previous

result 1110; shift the multiplicand to the left again (1 1 1 0
0 0)

44

+1110000 The fourth multiplier bit is a 1 write down the new
multiplicand add it to the first partial product to obtain the
final product.

1111110

This multiplication process can be performed by the serial multiplier circuit , which

multiplies two 4-bit numbers to produce an 8-bit product. The circuit consists of following

elements

X register: A 4-bit shift register that stores the multiplier --- it will shift right on the falling edge

of the clock. Note that 0s are shifted in from the left.

B register: An 8-bit register that stores the multiplicand; it will shift left on the falling edge of

the clock. Note that 0s are shifted in from the right.
A register: An 8-bit register, i.e, the accumulator that accumulates the partial products.
Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder outputs S7

through S0 are connected to the D inputs of the accumulator so that the sum can be transferred to
the accumulator only when a clock pulse gets through the AND gate.
The circuit operation can be described by going through each step in the multiplication of 1110

by 1001. The complete process requires 4 clock cycles.

1. Before the first clock pulse: Prior to the occurrence of the first clock pulse, the register A is
loaded with 00000000, the register B with the multiplicand 00001110, and the register X with
the multiplier 1001. Assume that each of these registers is loaded using its asynchronous
inputs(i.e., PRESET and CLEAR). The output of the adder will be the sum of A and B,i.e.,
00001110.

2. First Clock pulse:Since the LSB of the multiplier (X0) is a 1, the first clock pulse gets through
the AND gate and its positive going transition transfers the sum outputs into the accumulator.
The subsequent negative going transition causes the X and B registers to shift right and left,
respectively. This produces a new sum of A andB.

3. Second Clock Pulse: The second bit of the original multiplier is now in X0 . Since this bit is a 0,
the second clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are
not transferred into the accumulator and the number in the accumulator does not change. The
negative going transition of the clock pulse will again shift the X and B registers. Again a new
sum is produced.

4. Third Clock Pulse:The third bit of the original multiplier is now in X0;since this bit is a 0, the
third clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are not
transferred into the accumulator and the number in the accumulator does not change. The
negative going transition of the clock pulse will again shift the X and B registers. Again a new
sum is produced.

5. Fourth Clock Pulse: The last bit of the original multiplier is now in X0 , and since it is a 1, the
positive going transition of the fourth pulse transfers the sum into the accumulator. The
accumulator now holds the final product. The negative going transition of the clock pulse shifts
X and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out.

Code converters:

The availability of a large variety of codes for the same discrete elements of

information results in the use of different codes by different digital systems. It is sometimes

necessary to use the output of one system as the input to another. A conversion circuit must be

45

inserted between the two systems if each uses different codes for the same information. Thus a

code converter is a logic circuit whose inputs are bit patterns representing numbers (or

character) in one cod and whose outputs are the corresponding representation in a different
code. Code converters are usually multiple output circuits.

To convert from binary code A to binary code B, the input lines must supply the bit

combination of elements as specified by code A and the output lines must generate the

corresponding bit combination of code B. A combinational circuit performs this transformation

by means of logic gates.

For example, a binary –to-gray code converter has four binary input lines B4, B3,B2,B1 and four
gray code output lines G4,G3,G2,G1. When the input is 0010, for instance, the output should be
0011 and so forth. To design a code converter, we use a code table treating it as a truth table to
express each output as a Boolean algebraic function of all the inputs.

In this example, of binary –to-gray code conversion, we can treat the binary to the
gray code table as four truth tables to derive expressions for G4, G3, G2, and G1. Each of these
four expressions would, in general, contain all the four input variables B4, B3,B2,and B1.

Thus,this code converter is actually equivalent to four logic circuits, one for each of the truth
tables.

The logic expression derived for the code converter can be simplified using the usual

techniques, including ‗don‘t cares‘ if present. Even if the input is an unweighted code, the same

cell numbering method which we used earlier can be used, but the cell numbers --must

correspond to the input combinations as if they were an 8-4-2-1 weighted code. s

Design of a 4-bit binary to gray code converter:

46

Design of a 4-bit gray to Binary code converter:

47

Design of a 4-bit BCD to XS-3 code converter:

48

Design of a BCD to gray code converter:

Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code

Input:

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211 BCD code

input:

49

Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number:

Comparators:

50

1. Magnitude Comparator:

1- bit Magnitude Comparator:

51

4- Bit MagnitudeComparator:

IC Comparator:

ENCODERS:

Octal to Binary

Encoder:

Decimal to BCD Encoder:

Tristate bus system:

In digital electronicsthree-state, tri-state, or 3-statelogic allows an output port to assume a high
impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the
circuit.

This allows multiple circuits to share the same output line or lines (such as a bus which cannot

listen to more than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400 and

4000 series as well as in other types, but also internally in many integrated circuits. Other typical

uses are internal and external buses in microprocessors, computer memory, and peripherals. Many

devices are controlled by an active-low input called OE (Output Enable) which dictates whether

the outputs should be held in a high-impedance state or drive their respective loads (to either 0- or 1-

level).

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
https://en.wikipedia.org/wiki/7400_series
https://en.wikipedia.org/wiki/4000_series
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Active-low

